HOME arrow Research arrow Research Group List arrow Taira Group

Division of Research Innovation and Collaboration Taira Group

Location: Myoudaiji, South Laboratory Bldg. Room314
Annual Review : Link

Solid-State Lasers, Nonlinear Optics, Micro Solid-State Photonics

Micro Solid-State Photonics

“Micro Solid-State Photonics,” based on the micro domain structure and boundary controlled materials, opens new horizon in the laser science. The engineered materials of micro and/or microchip solid-state, ceramic and single-crystal, lasers can provide excellent spatial mode quality and narrow linewidths with enough power. High-brightness nature of these lasers has allowed efficient wavelength extension by nonlinear frequency conversion, UV to THz wave generation. Moreover, the quasi phase matching (QPM) is an attractive technique for compensating phase velocity dispersion in frequency conversion. The future may herald new photonics.

Giant pulse > 10 MW was obtained in 1064nm microchip lasers using micro-domain controlled materials. The world first laser ignited gasoline engine vehicle, giant-pulse UV (355 nm, 266 nm) and efficient VUV (118 nm) pulse generations have been successfully demonstrated. Also, few cycle mid-IR pulses for atto-second pulses are demonstrated by LA-PPMgLN. We have developed new theoretical models for the microdomain control of anisotropic laser ceramics.
 

2018_taira.png

Fig. 1 The concept of micro solid-state photonics as micro-domain controlled materials/devices.

img_taira_2.jpg

Fig. 2 Pulse width gap region of giant pulse lasers.

img_taira_3.jpg

Fig. 3 Extended wavelength by giant micro-photonics.

Selected Publications

  1. T. Taira, A. Mukai, Y. Nozawa and T. Kobayashi, Opt. Lett. 16, 1955-1957 (1991).
  2. 平等拓範, 日本学術振興会 光エレクトロニクス第130委員会編「光エレクトロニクスとその応用」オーム社, pp. 177-189, pp. 189-222, pp. 247-266, pp. 289-314, pp. 422-442 (2011.5): レーザー学会編「先端固体レーザー」オーム社, pp. 33-96, pp. 97-147 (2011.12).
  3. T. Taira, J. Saikawa, T. Kobayashi and R. L. Byer, IEEE Journal of Selected Topics in Quantum Electrons 3, 100-104 (1997).
  4. T. Taira, IEEE J. Sel. Top. Quantum Electron. 13, 798-809 (2007). INVITED
  5. T. Taira, [INVITED], Opt. Mater. Express 1, pp. 1040-1050 (2011) : D. G. Rowe,“ OUT OF THE LAB: Lasers for engine ignition,” Nature photonics 2, 515-517 (2008): OSA News Release <http://www.osa.org/en-us/about_osa/
    newsroom/news_releases/2011/lasersparksrevolution/>,BBC News <http://www.bbc.co.uk/news/scienceenvironment-13160950>.
  6. H. Ishizuki and T. Taira, "Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3," Opt. Express vol. 20, no.18, pp. 20002-20010 (2012).
  7. M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, Phys. Chem. Chem. Phys. 11, pp. 6098-6106 (2009).
  8. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Scientific Reports 4:5045 (2014). DOI: 10. 1038 / srep 05045.
  9. T. Taira, T. Y. Fan, and G. Huber, “ Introduction to the Issue of Solid-State Lasers” IEEE J. Sel. Top. Quantum Electron. 21, 0200303 (2015).