量子のさざ波を 光で制御する

大森 賢治

光分子科学研究領域 光分子科学第二研究部門 教授 (併)分子制御レーザー開発研究センター・ センター長

おおもり・けんじ 1987年 東京大学卒業 1992年 同大学院工学系研究科博士課程修 了、工学博士 東北大学助手・助教授を経 て2003年9月より現職 2004年~2005年 東北大学客員教授併任 2007年~2008年 東京工業大学客員教授 併任 2009年~現在東京大学大学院理学系研究 科流動講座教授併任 2001年~現在JST CREST事業併任

はじめに

物質を構成する電子や原子核は粒子であると同時に波でもある。我々はこの電子 や原子の波を光で観察し制御する研究を進めている。このような技術はコヒーレン ト制御と呼ばれ、1980年代半ばに物理化学分野の理論研究者が化学反応を制御す るために提唱した方法論である^{1,2)}。現在では化学、物理学、情報科学を横断する 学際的な技術となり、これによって、これら3分野を融合した新しい学問領域が出 現しようとしている。これに伴い、物理学者や情報科学者達は分子を基盤とする化 学の領域に急速に接近しつつある。

コヒーレント制御とは?

図1に示すように、二原子分子がレーザーパルスに照射され上位の電子状態に励 起される場合を考える。このパルスのフーリエ変換限界:

 $E_{p}(t) = E_{0}(t) \cos(\omega_{0}t) \qquad (1)$

における時間形状 *E*₀(*t*)の幅が分子の古典的な振動周期(通常サブピコ秒のオーダー; ピコ=10⁻¹²)よりも短ければ、複数の振動固有状態(原子の定在波:図1上段の各 離散状態)が一度に励起され、それらの重ね合わせ状態:

$$\Psi(r,t) = \sum_{n} c_{n} |v=n\rangle = \sum_{n} c_{n} \psi_{n}(r) \exp(-i(\omega_{n}t - \phi_{n}))$$
(2)

図1 超短レーザーパルスによる振動波束生成の概念図 Annu. Rev. Phys. Chem. 60, 487 (2009)より転載。

図2 量子さざ波(a) ヨウ素分子の中で互いに対向する2個の振動波束が干渉する様子。2個の波束が交差する一瞬(~ 100フェムト秒)の間だけ、ピコメートルスケールのさざ波が現れる。*T_c*(は古典的な分子振動の周期で、この 場合0.3 ピコ秒程度。(b) 左から順に、実験的に可視化されたヨウ素分子中の量子さざ波;実験信号の理論シミュ レーション;波束運動の理論シミュレーション。*Science* **311**, 1589 (2006)より転載。

が形成される。その結果、強め合う場 所に波束と呼ばれる局在した原子波が 発生し、結合軸上を行ったり来たりす る状態ができる(図1下段)。ここで、 $\psi_n(r)$ はn番目の振動準位v = nの固有関 数、 ω_n はその遷移角周波数で ω_0 にほぼ 等しい。つまり各固有状態は $2\pi/\omega_n$ 秒 の周期で振動しており、 $c_n \ge \phi_n$ はその 振幅(揺れ幅) と位相(揺れのタイミ ング)である。この固有状態を励起し た周波数領域におけるレーザー電場の 振幅と位相は $c_n \ge \phi_n$ に転写されるので、 レーザー電場を制御すれば波束を制御 することができる。波長が500 nm程 度の可視光で励起する場合、固有状態 はおよそ1.7フェムト秒周期(フェム ト=10⁻¹⁵)という超高速で振動するこ とになる。従って、 ϕ_n を制御する為には、 レーザー電場の振動をアト秒精度(ア ト=10⁻¹⁸)で制御しなければならない。 ここでは二原子分子の振動固有状態 を例にとって説明したが、コヒーレン ト制御の方法論は様々な量子系の任意 の固有状態に適用することができる。

アト秒ピコメートル精度の 時空間コヒーレント制御

例えば図2(a) に模式的に示され たように、1個のヨウ素分子内に2個 の振動波束が発生すると、それらが 交差する瞬間だけ干渉し、量子さざ 波(Quantum Ripple)と呼ばれる過 渡的な定在波が発生する。さざ波はピ コメートル領域の微小な空間で形成さ れ、100フェムト秒程度の寿命しか持 たない。我々は最近、フェムト秒レー ザーパルスを用いた独自の手法を用い て、初めてこのさざ波を可視化するこ とに成功している (図2 (b))³⁾。さざ 波がつくり出す美しい時空間模様(図 2(b))は量子カーペットと呼ばれてい る⁴⁾。もし2個の波束を発生させる2発 のフェムト秒レーザーパルスの時間間 隔をアト秒レベルで調節できれば、波 束間の相対的な位相を同レベルで調節 し量子カーペットの模様を多彩にデザ インできることが理論的に予測される。 筆者らは、これを可能にする高安定光 干渉計(アト秒位相変調器:APM)を 開発した⁴⁻⁹⁾。APMは真空容器中に組 み上げたマイケルソン干渉計で、片方 の光路には気体セルが設置されており、 この圧力を調節することでパルス間隔 をアト秒レベルで制御することができ る。537 nmのレーザーパルス対の時 間間隔をゼロ付近にした状態でAPMの 気体セルの圧力を掃引して得られる光 学インターフェログラムを図3に示す。 このように、1.79フェムト秒周期の レーザー電場の振動が観測される。こ のインターフェログラムを sine 関数で 最小二乗フィットした際の振動周期の 標準偏差は**700**ゼプト秒であった⁷⁾(ゼ プト=10⁻²¹)。さらにフィードバック 制御を施すことによって、パルス対の 時間間隔を長時間安定させることが可 能である。図4は、我々の研究グルー プが実際に実験を行っている様子を示 す写真である。正面の壁に投影された 画面はAPMから出射された二つのフェ ムト秒レーザーパルス対を分光器に入 射して測定した干渉スペクトルである。 このスペクトルの山が隣の山まで移動 すると、空間的に隔たった2個のフェム

図3 光の干渉 二つのレーザーパルス(中心波長 537 nm)の干渉を示す光学イン ターフェログラム。+が測定値で実線は最小二乗フィットしたsine関数。横軸は 波長から算出したインターフェログラムの周期(=1.79フェムト秒)で較正した。 てcontrol = 0は任意。*Phys. Rev. A* 76, 013403 (2007)より転載。

ト秒パルスの時間間隔が2フェムト秒程 度変化したことになる。人がぼやける程 の露光時間で撮影しても、その間スペク トルにぶれが見られない事がおわかりい ただけると思う。実際には40分以上の 連続測定を行う事も多いが、その間もこ の壁上の干渉波形はほぼ静止している。 我々はこのAPMを用いて量子カーペッ トの時空間模様をピコメートル精度で多 彩にデザインすることに成功した(図5) ⁴⁾。これはカーボンナノチューブの直径 の1/1000の微小空間における極限的な 精密加工である。このアト秒ピコメート ル精度の時空間コヒーレント制御は、コ ヒーレント制御の一つの到達点であり、 物質の波動性をより良く理解する上で重 要な進歩であるが、より良い理解は新た なテクノロジーの起点にもなる。例えば、 量子カーペットは、波束に含まれる固有

状態が有する振幅と位相を読み出す為の 有効な道具であり^{4,6-9)}、その発展形とし て分子の波動関数を用いた情報処理が見 えて来る。

分子の波動関数を用いた情報処理

現代の高速情報処理は高集積回路に 負うところが大きい。しかし、シリコ ン集積回路の高集積化がこれ以上進行 し、絶縁体の幅が数原子層レベルにま で到達すると、電子のしみ出しによっ て熱やエラーが発生することが予測さ れている¹⁰⁾。最新の分子エレクトロニ クス¹¹⁾を用いたとしても、電荷を情 報の担体として用いる限り、この本質 的な問題点を回避することはできない。 これを解決する為には、電気的に中性 な物質の波動関数を情報担体として使

図4 実験風景 左手前にある真空容器がアト秒位相変調器 (APM)。正面の壁上に投 影されているスペクトル干渉波形が静止していれば、APMから出てきた二つの フェムト秒レーザーパルスの間隔がアト秒レベルで静止しているということを意 味する。

えば良い。既に図1で説明したように、 超短レーザーパルスは原子や分子の多数 の固有状態に同時にアクセスすることが できる。例えば、10個の振動固有状態 を重ね合わせることは、さほど困難では ないし、パルスシェーパーを使えば各状 態の振幅と位相を独立に制御できる。こ の場合、各々の固有状態の振幅と位相を それぞれ[0, 1]および[0, π]と2値化す れば4種類の2値コード(00), (0π), (1 0), (1π)を取り得るので、全体では4¹⁰ = 1,048,576通りの異なった情報をオ ングストロームスケールの1個の分子 に入力することができる。原子や分子 が持つこの生来的な高集積性は、情報 素子としての大きな魅力である。特に、 分子は最近、大規模な量子コンピュー ターを構築する上で有用な素子として 注目されている¹²⁾。分子の固有状態を 用いた情報処理は、それが古典的であ れ量子的であれ、注目すべき研究課題 である^{8,9)}。

既に我々は、二原子分子の振動固有 状態を用いて振幅位相情報の読み書き を実現し⁴⁻⁹⁾、分子1個1個が情報素子 として機能し得ることを実証するとと もに、論理ゲートの開発も進めており、 最近では分子1個で離散フーリエ変換 を実行することにも成功している^{13,14)}。

今後の展望

超高速化学と極低温原子物理はこれ まで独立に発展を遂げてきた。しかし 最近、極低温極性分子を用いた量子計 算機の大規模化¹²⁾、あるいは量子シミュ レーターや基礎物理定数の精密測定¹⁵⁾ などが提案されて以降、原子物理学者 や量子光学者が、分子を対象とする化 学分野に高い関心を示すようになって いる。一方、化学の立場から見ると、極低温分子を用いれば、コヒーレント反応制御に大きな進展が見られるかもしれないし、量子計算素子や量子シミュレーターとしての新たな分子機能を引き出せるかもしれない^{8,9)}。さらには、コヒーレント制御の方法論が、極低温分子の生成そのものに役に立つかもしれない。今後、化学と物理の両分野の研究者が協力して、極低温分子のコヒーレント制御に基づく新しい研究分野を構築しようとする流れができつつある¹⁶⁾。

物質の波動性の検証と制御は、孤立 した原子分子ばかりでなく、液体や固 体、あるいは生体分子など広い範囲で 行われるようになってきている^{17,18)}。 このような複雑系では、多数の原子や 分子が複雑に相互作用しており、物質 の波としての性質が失われやすい。こ れは「デコヒーレンス」と呼ばれる現 分子科学の最先端

象である。今後、デコヒーレンスを制 御するための努力が必要になってくる だろう。

このような展望の下に、我々は現在、 レーザー冷却された極低温⁸⁷Rb原子集 団、あるいは半金属バルク固体や固体 パラ水素等の凝縮系における超高速コ ヒーレント制御や、デコヒーレンス制 御に関する実験研究を推進している。

一方、孤立した原子や分子の波の世 界と我々の身の回りの決定論的な世界 はどのようにつながっているのだろう。 コヒーレント制御が物質の波動性に根 ざしている以上、様々な環境下でその 可能性を追求することは、量子論的な 世界観の検証でもあるはずだ。100年 の謎を解くためのヒントがそこに隠さ れているかもしれない。

本研究をゼロから立ち上げ、発展さ せる上で重要な役割を果たしてくれた 香月浩之博士(分子科学研究所助教) と千葉寿氏(岩手大学技術職員)に感 謝する。

図5 波動関数の極限的な精密加工 APMから出力されたレーザーパルス対でヨウ素分子のB電子状態に2個の波束をつくる。τ_{control}は古典的 な分子振動周期の1.5倍付近に設定。(a)から(d)へとレーザーパルス対の相対位相θ_{p-c}を90°ずつ変化させると、波束干渉が描く波 動関数の時空間模様(量子カーペット)がピコメートルスケールで劇的に変化する。θ_{p-c} = 0は任意。*Phys. Rev. Lett.* 102, 103602 (2009) より転載。

参考文献

- 1) M. Shapiro, J. W. Hepburn, and P. Brumer, Chem. Phys. Lett. 149, 451 (1988)
- 2) D. J. Tannor, R. Kosloff, and S. A. Rice, J. Chem. Phys. 85, 5805 (1986).
- 3) H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, Science 311, 1589 (2006).
- 4) H. Katsuki, H. Chiba, C. Meier, B. Girard, and K. Ohmori, Phys. Rev. Lett. 102, 103602 (2009).
- 5) K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, *Phys. Rev. Lett.* 91, 243003 (2003).
- 6) K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, Phys. Rev. Lett. 96, 093001 (2006).
- 7) H. Katsuki, K. Hosaka, H. Chiba, and K. Ohmori, Phys. Rev. A.76, 013403 (2007).
- 8) K. Ohmori, Annu. Rev. Phys. Chem. 60, 487 (2009).
- 9) K. Ohmori, Proceedings of the Japan Academy, Ser. B 84, 167 (2008).
- 10) 例えば、D. Normile, Science 293, 787 (2001); M. Lundstrom, Science 299, 210 (2003).
- 11) J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, Nature **445**, 414 (2007).
- 12) 例えば、D. DeMille, *Phys. Rev. Lett.* 88, 067901 (2002); A. Micheli, G. K. Brennen, and P. Zoller, *Nat. Phys.* 2, 341 (2006); A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, *Nat. Phys.* 2, 636 (2006); P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, *Phys. Rev. Lett.* 97, 033003 (2006).
- 13) Y. Teranishi, Y. Ohtsuki, K. Hosaka, H. Chiba, H. Katsuki, and K. Ohmori, J. Chem. Phys. 124, 114110 (2006).
- 14) K. Hosaka , H. Shimada, H. Chiba, H. Katsuki, Y. Teranishi, Y. Ohtsuki, and K.Ohmori, to be submitted.
- 15) http://jilawww.colorado.edu/yelabs/
- 16) 分子研レターズ 59号「IMSニュース」の記事「第8回エクストリームフォトニクス研究会 "Ultrafast meets ultracold"」を参照.
- 17) V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, Science 313, 1257 (2006).
- 18) H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316, 1462 (2007).