共同利用研究ハイライト

実験と理論の共同研究による桂皮酸メチル 誘導体の光誘起異性化の解明

江幡 孝之 広島大学大学院理学研究科 教授

1. はじめに

近年の実験技術の進化や計算手法の 開発、コンピュータの計算能力の著し い向上、ソフトウェア開発のおかげで、 簡単な分子から複雑な生体分子にわた り,構造や反応に関する研究が格段の進 歩を遂げている。実験研究者は、スペ クトルや信号の時間変化といった実験 だけではなく、自ら理論計算を行い実 験結果の解析や、構造をvisual化する ことが当たり前になってきている。し かしながら、電子励起状態の構造変化 や反応については、まだまだ実験、理 論ともにそれぞれの領域で困難が伴 い、全体を理解するには実験化学者と 理論化学者のエキスパートの協力が不 可避である。本研究で対象としている 桂皮酸メチル誘導体は,紅色光合成細 菌中に存在する走光性の光受容蛋白質 photoactive yellow protein (PYP) の発

色団であるクマル酸のモデル分子とし て、また様々な置換基を付けた分子は 日焼け止めなどの化粧品の候補として、 研究がされてきた。この分子は、電子 基底状態ではトランス体が安定である が、光励起するとプロペニル基のC=C 二重結合回りの回転でシス体へと異性 化し、その後いくつかの中間状態を経 た後、分子は最終的にトランス体基底 状態に戻る。PYPでは、クマル酸の光 異性化が紅色光合成細菌の負の走光性 の引き金になっている。

光誘起初期過程や異性化がどの状態で 進むかについては不明な点が多い。電子 励起状態の光異性化はスチルベンやアゾ ベンゼンについてこれまでよく研究され ているが、今回対象とした分子はカルボ ニル基を持つため、S1(ππ*)状態に近接 する¹nπ* 電子状態との相互作用や、水 素結合などの環境の効果を考慮する必要

	R_1	R ₂	R ₃
pMMC(OMpCA)	Н	Н	OMe (OH)
<i>m</i> MMC(OM <i>m</i> CA)	Н	OMe (OH)	Н
oMMC(OMoCA)	OMe (OH)	Н	Н

表1 o-, *m*-, *p*-MMC(ortho-, meta-, para-Methoxy Methyl Cinnamate) および OMo-, *m*-, *p*-CA(Methyl ortho-, meta-, para-hydroxyl Cinnamate).

があるためにより複雑である。この協力 研究は計算科学研究センターの江原教授 と行っており、平成24年に広島大学で 江原先生が集中講義をされたときの全体 講演で、ちょうど私が始めようと準備を していた桂皮酸メチル誘導体の異性化過 程の理論計算結果を紹介され、是非共同 研究をやりましょうということが始まり だった。

2. 協力研究の内容

実験は広島大学において、超音速分 子線と波長可変レーザーを組み合わせ、 気相極低温条件分子に対してレーザー 誘起蛍光法や共鳴イオン化法による電 子状態分光、ピコ秒レーザーによるポ ンプープローブ法によるS1(ππ*)電子 状態の寿命測定を中心に行った。また、 水1分子を付けた水素結合錯体につい ても同様の研究を行い、水素結合が無 輻射過程に及ぼす効果を調べた。計算 は、電子基底状態については、PBE0/ cc-pVDZレベルの密度汎関数法、電子 励起状態は、 $S_1(\pi\pi^*) \rightarrow {}^1n\pi^*$ 電子状態 の交叉についてはTD-PBE0/cc-pVDZを 用い、S₁(ππ*)状態内でのトランス→シ ス異性化の初期過程についてはCIS(D)/ aug-cc-pVDZで計算を行った。超音 速分子線による気相極低温分子生成の 利点は、極低温になることでスペクト ルがシャープになるとともにコンフォ マーを選別して個別に研究できること にある。図1に示すようにpMMC(para-Methoxy Methyl Cinnamate)では、ト ランス体だけでも4つのコンフォマー が存在可能である。更に、表1に示す ように oMMC や mMMC ではそれぞれ 8つのコンフォマーが存在可能である。 *p*MMCでは実際に3つのコンフォマー が観測された。

まず置換基の位置に対する効果を調 べたところ、oMMCやmMMCではとも にS₁(ππ*)ゼロ点準位から1000 cm⁻¹ ぐらいまでは、S1(ππ*)電子励起状態は 27~7 nsの寿命を示し、コンフォマー の違いや励起エネルギー依存はあまり みられない。一方、pMMCではs-cis/ syn, s-tans/syn, s-cis/antiの各S1ゼロ 点準位の寿命が、それぞれ280 ps, 108 ps, 80 ps とコンフォマーによって異な ることと、さらに励起エネルギー増大 に従い著しく短くなることが明らかに なった(図2)。励起状態寿命がコンフォ マーによって大きく異なることは、我々 にとって意外な結果で、対象とする分 子の励起状態無輻射過程研究の難しさ が分かる。また、pMMCのカルボニ ル基に水分子が付いた pMMC-H₂Oは、 S₁ゼロ点準位の寿命が21 psとpMMC 単体に比べ短くなるという結果を得た。

これらの実験結果に対して、電子励 起状態のエネルギー計算を行った結果 を図3、図4に示す。図3はpMMC お よび pMMC-H₂O 水素結合体における S₁(ππ*) → ¹nπ* 電子状態間の無輻射緩 和、図4は、S1(ππ*)状態でトランス →シス異性化反応座標に沿ったポテン シャルエネルギー曲線である。両者の 過程で大きく異なるのは、S1(ππ*) → ¹nπ*の無輻射緩和では、*p*MMC-H₂O 水素結合体では pMMC 単体よりも交叉 のエネルギー障壁が大きくなっている。 これは、non-bonding 軌道が水素結合 により安定化し、結果として¹nπ*のエ ネルギーが上がるためである。異性化 に沿った反応座標では、比較的初期の 部分(二面角150°の辺り)において障 壁が現れており、その障壁の大きさが pMMC-H₂O水素結合体の方が単体より も低くなっている。

実験結果は、*p*MMC-H₂Oの方が *p*MMCと比べて無輻射過程へのエネル ギー障壁が小さくなることを示唆して おり、これら実験と理論計算の結果を 総合して、我々は*p*MMCの電子励起状 態は,トランス→シス異性化座標に沿っ て無輻射緩和が進むと結論した。この

結果は最終結論ではなく、まだ実験的 には異性化途中の中間体、特にシス体 の捕捉が不可欠である。また、異性化 座標に沿ったポテンシャルエネルギー 曲線の全貌や¹nπ* 電子状態との交叉が 及ぼす効果等、まだまだ解明しなくて はならない問題点が多いチャレンジン グな系である。実際、アムステルダム 大学のBuma 等は、S₁($\pi\pi^*$) → ¹n π^* 内 部転換が、S1状態の主な緩和経路であ ると主張しており、このことからも電 子励起状態反応の研究が単純でないこ とが分かる。光異性化を含めた無輻射 過程の完全な理解に向け、今後とも江 原先生のグループと協力研究を続けて いきたいと考えている。最後に、この 研究は私の研究室の博士課程3年の宮 崎康典君の多大な努力によるところが 大きいことを述べておきたい。

図2(左) p-MMCの各コンフォマーのS₁状態の時間減衰の様子(それぞれ、一次の指数関数で減衰している) (右) p-MMCのS₁状態の減衰定数の励起エネルギー依存

図3 *p*MMC(黒)および *p*MMC-H2O(赤)におけるS1(ππ*)と¹nπ* 状態の交叉

えばた・たかゆき 1981年東京工業大学大学院理工学研究科化学 専攻博士(理学)取得、同年東北大学 理学部 化学科助手、1993年東北大学 理学部 化学科 助教授、1996年東北大学 大学院理学研究科化学 専攻助教授、2004年より現職。 専門:物理化学、機能性分子のレーザー分光 趣味:テニス(学生時代から約40年、今でも楽 しんでいます)

参考文献

- D. Shimada, R. Kusaka, Y. Inokuchi, M. Ehara, T. Ebata, "Nonradiative decay dynamics of methyl-4-hydroxycinnamate and its hydrated complex revealed by picosecond pump–probe spectroscopy", *Phys. Chem. Chem. Phys.*, 14, 8999 (2012)
- [2] Y. Miyazaki, K. Yamamoto, J. Aoki, T. Ikeda, Y. Inokuchi, M. Ehara, T. Ebata, "Experimental and theoretical study on the excited-state dynamics of *ortho*-, meta-, and *para*-methoxy methylcinnamate", *J. Chem. Phys.*, 141, 244313 (2014)
- [3] E. M. M. Tan, S. Amirjalayer, B. H. Bakker, W. J. Buma, "Excited State Dynamics of Photoactive Yellow Protein Chromophores Elucidated by High-Resolution Spectroscopy and Ab Initio Calculations". Faraday Discuss. 163, 321(2013)

共同利用研究ハイライト

準安定多価分子イオンの生成機構 ――OCSの場合――

副島 浩一 新潟大学理学部 教授

1.はじめに

我々のグループでは、主に軽元素で 構成される3原子分子を対象にして、内 殻光電離後の分子解離過程を調べてい る。大きな内部エネルギーを持つ内殻 空孔状態の分子は、光もしくは電子を 放出してエネルギー緩和をするが、軽 元素で構成された分子の場合は電子放 出過程、すなわちオージェ過程が主要 な緩和機構となる。つまり、光電離後 の分子の中間状態として、光電子およ び複数のオージェ電子が抜けた多価イ オン状態が形成される。ほとんどの多 価分子イオンは、核間に働くクーロン 反発力によって、その後速やかに解離 するが、多価分子イオンの電子状態に よっては準安定な状態を維持する場合 がある。どのような電子緩和過程の時 に準安定な多価分子イオンが生成され るのであろうか? 幾つかの基本的な 二原子分子を除き、それら準安定な二 価分子イオン生成のメカニズムの詳細 は未だ不明である。OCSは準安定な2 価分子イオン;OCS²⁺を形成すること が知られており、この疑問に答える実 験対象として最適な分子であると言え る。ここでは、S2p,C1s,O1sの内殻 光電離過程:OCS + hv → (OCS)²⁺ + e_{photo} + e_{Auger} における準安定なOCS²⁺ の生成機構を、オージェ電子・光イオ ン同時計測(AEPICO)実験によって 解明した研究について以下に簡単に紹 介する。

2. オージェ電子・光イオン同時計測実験

実験は、BL4B及びBL6Uにおいて、 図1に模式的に示した繁政グループが 開発した電子ーイオン多重同時計測装 置を使用しておこなった。この装置は、 広い検出立体角と高いエネルギー分解 能を両立させたダブルトロイダル型電 子エネルギー分析器(DTA)と飛行時 間型イオン運動量分析器(i-TOF)を組 み合わせることによって、AEPICO実 験が高効率で実施できる特徴を有して いる。AEPICO実験法を使えば、内殻 光電離後に生成されたイオン群のそれ ぞれのイオン種に対して、どのような 電子緩和機構によってそれらが生成さ れたのか、二価分子イオンの電子状態 とイオン種とを関連付けることが可能 となる。

OCS分子の基底状態における価電子 軌道の電子配置は、 $(6\sigma)^2(7\sigma)^2(8\sigma)^2$ $(9\sigma)^2(2\pi)^4(3\pi)^4$ である。i-TOFで得ら れたS2p, C1s, O1s内殻光電離過程で 生成されるイオン群の飛行時間(TOF) スペクトルを、それぞれ図2(a)、(b)、 (c)に示す。3200ns付近にあるピーク がOCS²⁺に対応し、その両脇にある OC⁺とS⁺は、OCS²⁺が2体解離して 生成したイオンである。それ以外にも、 OCS²⁺が3体解離して生成したC⁺や

O⁺が観測されている。(a)~(c)のTOF スペクトル中のOCS²⁺とOC⁺のピーク 強度比を比較すると、明らかに(a)で大 きくなっていることがわかる。すなわ ち、S2p内殻光電離過程では、準安定 なOCS²⁺が効率よく生成されているこ とになる。なぜ、S2p内殻光電離過程 だけが、効率よく準安定OCS²⁺を生成 するのだろうか? その答えは、図3 に示したAEPICO実験で得られた同時 計測オージェスペクトルから読み解く ことができる。図3(a)、(b)、(c)に、そ れぞれS-LVV, C-KVV, O-KVVオージェ スペクトルを示す。図中赤線で示して あるスペクトルは、同時計測処理して いない通常のオージェスペクトルを、 青線で示してあるのがOCS²⁺と同時計 測処理したオージェスペクトルを示し ている。図3の横軸はオージェ終状態 の内部エネルギーで、内殻電子のイオ ン化ポテンシャルと実験的に得られる オージェ電子の運動エネルギーの差で 求められる。これはまた、オージェ終

状態として生成される、価電子 軌道に2つの空孔が存在する二 価分子イオンの束縛エネルギー に相当する。例えば、図3(a)の 30~35eVにある幅の広いバン ドピークは、OCSの最外殻の価 電子軌道である3πから電子が2 つ抜けた状態:(3π)⁻²に対応し ている。図3(a)の赤線と青線を 比較すると、オージェ終状態が (3π)⁻²の時、OCS²⁺が準安定な 状態を維持できることがわかる。 理論計算によるOCS²⁺ (3π⁻²) 状態のポテンシャル曲線は、フ ランクーコンドン領域に深いポ テンシャル極小を有する擬束縛 状態であり、その厚いポテン シャル障壁のためにトンネリン グ確率が非常に小さくなること を考えると、この状態が準安定

であると言う今回の実験結果は、極め て妥当であると言える。しかし、なぜ S2p内殻電離過程の時だけ(3π)⁻²オー ジェ終状態が効率的に生成されるのか という疑問が残る。この疑問に答える ためには、3π分子軌道の波動関数の空 間分布を知る必要がある。理論計算に よれば、3π分子軌道の波動関数は、S 原子近傍で大きな振幅を持ち、S2p内 殻軌道との重なりが極端に大きい。電 子間のクーロン相互作用の大きさに比 例するオージェ遷移確率は、波動関 数の重なりでその大小が決まるため、 S2p内殻イオン化後のオージェ遷移過 程において、OCS²⁺ (3π⁻²)状態の顕著 な生成が起こると考えられる。内殻空 孔状態の電子緩和過程が、原子近傍で 局所的に進行するなら、図3の同時計 測オージェスペクトル(青線)は3π分 子軌道の原子サイト分布を直接反映す るものとして捉えることもできる。今 後はOCSで明らかになった局所的な電 子緩和過程が一般的であるか、対象の

図3

分子種を広げて研究を進める予定である。

3.おわりに

大学教員(特に地方大学教員)が自 由に使える校費が大幅に削られている 最近の動きを見ると、近い将来、大学 では実験装置を動かすことすらままな らなくなる時が来ると予想される。そ の時、UVSORのような全国共同利用施 設の役割が、我々地方大学教員にとっ て今にも増して重要になってくる。現 在のUVSORの運営状況やサポート体 制には非常に満足しており、是非この 状態を将来にわたって続けていただき たいと切に願う。もちろん、UVSORで 得た実験データを世に出し、施設のア クティビティを世間に対してアピール する協力は惜しまない覚悟である。

そえじま・こういち

1993年3月東京都立大学理学研究科物理学専攻 博士課程修了(博士(理学)取得)。学振特別研究員 等を経て、1996年8月新潟大学自然科学研究科 助手、2001年12月同理学部助教授、2015年4月 より現職。 専門:原子分子物理学、多価イオン科学

専门・原士分士物理学、多価1 オノ科= 趣味:山歩き

共同利用研究ハイライト

幾何学的フラストレーションを有する 磁性体のESRによる研究

太田 仁 神戸大学分子フォトサイエンスセンター 教授 櫻井 敬博 神戸大学研究基盤センター 助教

1. はじめに

近年、量子効果が顕著な形で現れ る磁性体やその現象の探索、研究が盛 んに行われています。その対象の一つ が、スピン間に幾何学的なフラストレー ションを有するいわゆるフラストレー ション系と呼ばれる磁性体です。本研 究は、典型的なフラストレーションを 有する格子であるカゴメ格子の、特に S = 1/2のHeisenberg型反強磁性体の モデル化合物に関するものです。

S = 1/2 Heisenberg型カゴメ格子反 強磁性体は、実験、理論両面から未だ その基底状態が完全には明らかにされ ていない系です。スピンをベクトルと して取り扱えば基底状態としてはエネ ルギーを最低にするスピン配置での秩 序状態が期待されますが、理論的には 量子効果により更にエネルギーの低い 状態が存在することが示唆されていま す^[1]。一方、現実のモデル化合物では、 格子に歪みがある等の理由により、理 論が予測する様な顕著な量子効果を見 出すには至っていません^[2-4]。そこで、 本研究では新しいカゴメ格子のモデル 化合物[Cu₃(CO₃)₂(bpe)₃]·2ClO₄^[5]を 取り上げて、ESRによりその性質を探 る事としました。

我々は、神戸大学で50 Tを越える強 磁場と広い周波数範囲(0.1 ~ 7 THz) に亘る多周波数でのESR測定を行っ ています。しかし物質によっては低周 波数領域、即ちX(10 GHz)、Q(35 GHz)bandでのESR測定がどうして も必要になる場合があります。その様 な場合、我々は、これらのESR装置 が大変良く整備された分子研の共同利 用を利用します。そして本物質はこの X-bandでのESR測定が系の基底状態を 理解する上で非常に重要でした。

2.カゴメ格子化合物[Cu₃(CO₃)₂(bpe)₃]・ 2ClO₄のESR測定

図1に[Cu₃(CO₃)₂(bpe)₃]·2ClO₄の ab面内及びbc面内の結晶構造を示しま す。磁性イオンであるCu²⁺(S = 1/2) がab面内でカゴメ格子を形成し、面間 は1,2-bis(4-pyridyl)ethaneという有機 化合物で隔てられています。この構造 から本系は二次元性が高く、理想的な カゴメ格子のモデル物質になっている のではないかと考えられました。しか し実際には7K程度で秩序化すること がNMR測定から示唆されています^[6]。 ただその秩序状態の詳細ははっきりし ていませんでした。今回我々は、本系 の粉末試料を用い、強磁場ESR測定及 びX-band ESR測定を行って、常磁性 状態においては特徴的なESRスペクト ル、低温では秩序状態を示唆する集団 励起モードを観測しました。

図2は210 GHzでの常磁性状態にお けるESRスペクトルです。スペクトル は低磁場側のピークと高磁場側の肩か らなる、一見すると典型的な一軸異方 性を有する粉末パターンを示していま す。スペクトルの形状から、磁性イオ ンCu²⁺のホール軌道は3z²-r²軌道を基 底状態とすることを想起させます。し かし点電荷モデルによる結晶場計算を 行った結果、当初の予想に反してホー ル軌道はx²-y²、yz及び3z²-r²軌道の

図1 [Cu3(CO3)2(bpe)3]·2ClO4のab面(a)及びbc面内(b)の結晶構造

図2 210 GHz、265 Kにおける ESR スペクトル

混成軌道からなり、中でもx²-y²軌道の 重みが最も大きいことが分かりました。 そしてCu²⁺サイトの交換相互作用によ る平均化の結果、ab面内でg値が等方 的かつ垂直方向に比べ大きくなり、面 に垂直な方向のg値がより2に近くなっ ているということが分かりました。こ の様にスペクトルの粉末パターンと構 造との対応が明らかになりました。

一方、転移温度以下4.2 Kでは、常 磁性状態とは明らかに異なる振る舞い が観測されました。 図3はg値の周波 数依存性を示したもので、周波数の低 下に伴ってg値の差が大きくなってい ます。特にX-bandにおいて二つのg値 の差が大変大きくなっている様子が明 らかです。常磁性状態であればg値は 周波数に依存しないはずなので、この 振る舞いは、観測された共鳴が秩序状 態における集団励起由来であることを 示しています。反強磁性状態、強磁性 状態のESRモードを実験値と比較し、 他の報告されている実験事実等も考慮 して検討を行った結果、強磁性状態で あると考えるのが最も妥当であるとの 結論に至りました。図の実線は強磁性 共鳴モードによるフィッティングの結果 を示しており、比較的良く実験を再現し ています。この様に、X-bandを含む広 い周波数範囲でのESRモードの観測に より、本系の基底状態が強磁性状態であ ることが明らかになりました。

3. おわりに

カゴメ格子化合物[Cu₃(CO₃)₂(bpe)₃]· 2CIO₄は、残念ながらフラストレーショ ン由来のエキゾチックな量子効果を示 す物質ではありませんでしたが、ESR によってその常磁性状態や秩序状態を 詳細に明らかにすることができました。 ESRがスピン系の研究で非常に強力な 武器になる事がお分かり頂けたのでは ないかと思います。同時に本系に関し ては低周波数領域のESR測定が非常 に威力を発揮した例となりました。本 系については今後Q-bandのESR測定 を分子研の共同利用により行い、図3 のフィッティングをより確かなものに したいと考えています。最後に、分子 研の共同利用でいつもお世話になって いる中村敏和准教授をはじめ関係者の 方々に、紙面を借りて篤くお礼申し上 げます。

おおた・ひとし

1982年東京大学理学部卒業。1986年東京理科 大学大学院博士課程中退。1987年神戸大学 理学部助手、1994年同大学理学部助教授、 2001年同大学分子フォトサイエンス研究 センター教授、2007年同大学自然科学系先端 融合研究環分子フォトサイエンス研究センター 教授、現在に至る。神戸大学において、一貫して 強磁場ESR測定装置の開発と量子スピン系を はじめとしたその物性研究への応用に従事。

図3 4.2 Kにおけるg値の周波数依存性. 点線はX-bandの周波数を示す

参考文献

- [1] Ch. Waldtmann et al., Eur. Phys. J. B 2 (1998) 501.
- [2] Z. Hiroi et al., J. Phys. Soc. Jpn. 70 (2001) 3377.
- [3] M. P. Shores et al., J. Am. Chem. Soc. 127 (2005) 13462.
- [4] Y. Okamoto et al., J. Phys. Soc. Jpn. 78 (2009) 033701.
- [5] P. Kanoo et al., Dalton Trans. 26 (2009) 5037.
- [6] H. Kikuchi et al., J. Phys. Soc. Conf. Proc. 1 (2014) 012019.

さくらい・たかひろ

1992年大阪大学理学部卒業。1994年大阪大学大 学院理学研究科高分子学専攻修了。同年カネボウ・ エヌエスシー(株)、2003年神戸大学自然科学 研究科構造科学専攻修了、博士(理学)取得。同年 神戸大学研究基盤センター助手、2007年同助教、 現在に至る。特に圧力下ESR装置の開発と応用 に従事。