共同利用研究ハイライト

近接場顕微分光イメージングによる金ナノ微粒子 低次元集合構造における電場分布と構造との関係

島田透 弘前大学教育学部理科教育講座 講師

1. はじめに

近年、ナノテクノロジーの基本材料 の一つとして、金属ナノ微粒子が着目 されている。金属ナノ微粒子は、その サイズゆえバルクとは異なる新しい物 性を示すことが多いためである。分光 分野においては、金や銀などの貴金属 ナノ微粒子集合体に分子の光学応答を 増強させる特異な性質があることが知 られている。このような性質は、表面 増強ラマン散乱(SERS)などに利用さ れ、単分子計測や超高感度センサーの 開発などを目指した研究が数多く行わ れている。

ラマン散乱強度の増大の主な起源は、 金属ナノ微粒子の自由電子の集団運動 (表面プラズモン)によって局在した 増強電場によるものと考えられている。 しかしながら、金属ナノ微粒子集合体 に分布する増強電場と粒子配列構造と の関係については完全には理解されて いなかった。そこで、本研究では、数 多くの金属ナノ微粒子が集まった集合 体として、金ナノ微粒子二次元集合体 および金ナノ微粒子一次元構造に着目 し、これらの集合体における増強電場 の空間分布と微粒子構造との関係を明 らかにすることを目的に研究を行った。

2. 走査近接場光学顕微鏡による増強電場分布の可視化

金属ナノ微粒子集合体における光学 応答の分布(増強電場の空間分布)を 観察するためには、光の回折限界を超 えた十分な空間分解能が得られる走 査近接場光学顕微鏡(SNOM)を用 いる必要がある。本研究を計画した当 時、分子科学研究所の岡本グループで は、自作したSNOMを用い、金属ナノ 微粒子集合体の基本構造である二量体 及び三量体に関し、増強電場が粒子間 に局在していることを実験的に明らか にしたところであった^[1,2]。このこと は、それまでの理論による予測が正し

いということを初め

て実証したものとし

て注目を集めていた。

そこで、本研究にお

いても、このSNOM

を使わせていただく

ことで、金ナノ微粒

子低次元集合体にお

ける増強電場の空間

分布の可視化が可能

になると考え、分子

科学研究所の共同利

用制度(協力研究)

によりこの装置を利

用させていただくこ

図1球形の金ナノ粒子(直径100 nm)二次元集合体の走査背電子顕微鏡 (SEM)像と走査近接場光学顕微鏡(SNOM)像を対応付けし、重ね 合わせた像。特に強い増強電場は周辺部に分布している。

ととした。

3. 走査電子顕微鏡によるナノ構造の観察

実際に装置を利用させていただくと、 高空間分解な光学像は得られるものの、 同時に得られる形態像はファイバープ ローブの先端形状が畳みこまれてしま い、金ナノ微粒子低次元集合体中の個々 の微粒子形状をはっきりと得ることが 難しいことが分かった。そこで、岡本 グループ所有の走査電子顕微鏡(SEM) も利用させていただき、金ナノ微粒子 低次元集合体の詳細な構造観察も行っ た。SNOMで得た電場の空間分布像と、 SEMで得た形態像とを対応させる方法 の確立を行うことで、金ナノ微粒子低 次元集合体における局在電場とナノ微 粒子構造との相関を可視化することに 成功した。

4. 結果と考察

SNOM像と対応付けるために射影変 換を行ったSEM 像と、入射光と平行 な偏光成分の発光で観察した二光子誘 起発光(TPI-PL)像とを重ね合わせた 結果を図1と図2 に示す^[3,4]。二光子 励起確率は、電場の四乗に比例するた め、TPI-PL像は電場分布を反映してい る。図1と図2は、それぞれ金ナノ微粒 子二次元集合体および金ナノ微粒子ー 次元構造に対する結果である。図1 か ら増強電場が配列構造周辺部に分布し ていることを明らかにすることができ た。理論計算により、このような電場 分布が双極子 - 双極子相互作用による ことが示唆された^[5]。図2で示す球形 の金ナノ微粒子が直線状に一列に並ん だ配列構造の結果からは、一次元構造 に閉じ込められた増強電場は、一次元 構造に均一に分布するのではく、その 両端部に集中することが明らかとなっ た。さらに理論に基づいた電場分布シ ミュレーションにより、このような特 徴的な光電場の空間構造は、一次元構 造を構成するナノ粒子の粒子数と励起 する光の波長に依存する可能性がある という結果が得られた^[4]。今後は、一 次元構造を構成するナノ粒子の粒子数 と励起する光の波長との依存に関して も明らかにしていきたい。

5. おわりに

本研究は、分子科学研究所の協力研 究課題として、岡本裕巳教授、井村考 平助教(現 早稲田大学教授)の御協 力のもと行われました。とくに岡本教 授には、装置の提供だけでなく、実験 結果のモデル化や理論計算に関しても、 多大なる御協力をいただきました。こ の場を借りて厚く御礼申し上げます。

分子科学研究所の共同利用制度は、 研究予算が乏しく、最先端装置を所有 しない若手研究者にとっては、自身の 研究室では実現困難な研究アイデアを、 貴研究所内の先生に御協力いただきな がら実現させることのできる貴重な制 度だと考えております。この制度の継 続とさらなる充実をお願いしたく思い ます。

図2 球形の金ナノ粒子(直径100 nm)が18 個並んだ一次元構造の走査電子顕微鏡(SEM)像と、 走査近接場顕微鏡(SNOM)で測定した光電場の空間構造。増強電場は、一次元構造に 均一に分布するのではなく、両端部に局在する。

参考文献

- Kohei Imura, Hiromi Okamoto, Mohammad Kamal Hossain and Masahiro Kitajima, *Chem. Lett.* 35, 78 (2006).
- [2] Kohei Imura, Hiromi Okamoto, Mohammad Kamal Hossain and Masahiro Kitajima, Nano Lett. 6, 2173 (2006).
- [3] Toru Shimada, Kohei Imura, Mohammad Kamal Hossain, Hiromi Okamoto and Masahiro Kitajima, J. Phys. Chem. C 112, 4033 (2008).
- [4] Toru Shimada, Kohei Imura, Hiromi Okamoto and Masahiro Kitajima, Phys. Chem. Chem. Phys. 15, 4265 (2013).
- [5] Hiromi Okamoto, Kohei Imura, Toru Shimada, Masahiro Kitajima, J. Photoch. Photobio. A 221, 154 (2011).

しまだ・とおる

2001年早稲田大学理工学部化学科卒業。2006年東京大学大学院理学系研究科博士課程修了、 博士(理学)。物質・材料研究機構ナノ計測センター博士研究員、立教大学理学部化学科 助教、ベルリン自由大学物理学科博士研究員(アレキサンダー・フォン・フンボルト奨学金)、 フリッツ・ハーバー研究所物理化学部門博士研究員を経て、2012年より弘前大学教育学部 理科教育講座講師。専門は物理化学、特に分光学と表面科学。