共同利用研究ハイライト

腸管出血性大腸菌感染症の治療薬開発のための in silico研究

尾又 一実 国立国際医療研究センター 数理疫学研究室室長

1. 流行が続く腸管出血性大腸菌感染症

本邦における腸管出血性大腸菌 Enterohemorrhagic Escherichia coli (EHEC) 感染報告数は、1996年の大 流行以降も年間約4,000人前後で推移 しており(図1(a))^[1]、有効な薬剤がい まだ開発されていないことを考えると、 この傾向が今後も続くという可能性は 大きい。EHEC感染症は症状に大きな 幅があり、全く症状がないもの、軽い 腹痛や下痢のみで終わるものから、お よそ3~8日の潜伏期をおいて頻回の 水様便、激しい腹痛、著しい血便、さ らにはこれら有症者の6~7%が、溶 血性尿毒症症侯群(HUS)や脳症など の重篤な合併症を起こし、ときには死 に至るものまである^[2]。

EHEC 感染症が認知されたのは、 1982年、アメリカ・オレゴン州とミシ ガン州でハンバーガーによる集団食中毒 事件があり、患者の糞便からO157が原 因菌として見つかったのが最初で^[1,2,3]、 それ以前はその存在が知られていな かった。本邦では、1984年に大阪府で、 2才と5才の兄弟が腹痛と水様性下痢を 発症し、血性下痢になったのが最初の 報告であろう。当時はまだEHECの認 知度が低かったので、詳しい検査は実 施されず、原因不明の下痢症として処 理されたが、翌年、保存されていた弟 の糞便からO157が検出された^[3]。

2. 志賀毒素とその阻害分子

EHEC感染症の病原分子は、EHEC が産生する志賀毒素(ヴェロ毒素とも いう)である。EHECの血清型は、菌 の表面にあるO抗原(細胞壁由来)と H抗原(べん毛由来)により細かく分 類されており^[2]、代表的な血清型に O157:H7がある(図1(b))。EHECは、 血清型によって、志賀毒素を産生する ものとしないものがある。

志賀毒素(Stx)は、Aサブユニット (StxA)とBサブユニット(StxB)か らなる。StxBは標的細胞膜上の中性糖 脂質であるグロボトリアオシルセラミ ド(Gb3)の糖鎖部を特異的に認識し、 これによりStxはエンドサイトーシス で細胞内に侵入する。StxAは侵入後の 細胞内での毒素活性を担う^[4]。本研究 で着目するStxBは5量体タンパク質で ある(図2a)。Stxには2種類のファミ リー、Stx1、Stx2があり、StxBの残基 数は1量体あたりそれぞれ69個と70個、 合計で345個と350個である。StxBの 形状は平面的で、明らかな結合ポケッ トを持たない。結合サイトは1量体あ たり3箇所あることが知られており^[4,5]、 合計15個が、表面上に分布している(図 2a)。

西川喜代孝の研究グループは、これ までに多くのStxB阻害分子を考案して きたが^[4,6,7]、最近、ペプチド・ライブ ラリー法を利用して、Stx1B、Stx2B 双方に強く結合するリガンド、MMAtet を開発した^[7]。このリガンドは、彼ら が長年研究を続けている、"腕"のある (多価の)ペプチド・オリゴマーの一つ で、腕(ライブラリー部分)の数は4 本、各腕のアミノ酸配列(モチーフ)は、 MAMMARRRRAである(図2b)。この 大きさは、StxBの表面をほぼ覆う大き さである。

StxBは、単独^[8]もしくはGb3やその 他の分子との複合体^[5,9,10,11]はX線解

(a)

(b)

図1(a)国内の2006-2015の期間の腸管出血性大腸菌感染症報告数。(b)腸管出血性大腸菌O157:H7の電子顕微鏡写真 (国立感染症研究所 http://www.nih.go.jp/niid/ja/ehec-m/2055-bac1/related/710-ehec-o157sem.html)。

析によって結晶構造が明らかにされて いるが、西川らのペプチド性阻害薬と の複合体は現在のところ結晶化に成功 していないため、その静的な構造さえ 不明である。そこで、本研究では、分 子動力学(MD)シミュレーションの 方法により、Stx1のBサブユニット (Stx1B)とMMAtetの結合を詳しく検 討することにした。

3. In silico研究の方法

MDシミュレーションは、高速計 算プログラムGeneralized-Ensemble Molecular Biophysics (GEMB、奥村 久士准教授(分子研)による開発) ^[12]を使って行った。このプログラム は、腕を持つ樹状分子を扱うことがで きる。Stx1Bの初期構造は、PDBコー ド1BOSを用いた。水分子は約2万個 が必要と見積もられ、力場は、StxBと MMAtetにはAMBER99SBを、水分子 にはTIP3Pを用いた。

4. 計算結果

MMAtetのライブラリー部分1本単独 をStx1Bに結合させた場合、Stx1Bの 結合サイトにある酸性アミノ酸(アス パラギン酸、グルタミン酸)に、リガ ンドの塩基性アミノ酸(アルギニン) が引き寄せられるように結合した。単 独のライブラリー部分4本をStx1Bに 結合させた場合は、一つの例として、2 本のペプチドはStx1Bの表側に結合 したが、他の2本は裏側と側面に結合 する、といった結果が得られた。ただ し、Stx1Bの裏側にはStx1Aがあるの で、裏側への結合ということは現実に はあり得ない。この計算結果は、4本は 同じものであるから同じ電荷をもって おり、相互に斥力が働いたことを示し ていると考えられる。このことは、西 川らの生物学実験で、ライブラリー単

図2 (a) Stx1B と(b) MMAtetの構造。Stx1Bの3種類の結合サイトの原子を赤、緑、青で示す。 MMAtetは、M(メチオニン)、A(アラニン)、R(アルギニン)の原子をそれぞれ赤、緑、 青で示す。

図3 時間 10ns(a)、150ns(b)における、Stx1B-MMAtet 複合体の構造。Stx1B、MMA-tet はそ れぞれ、space-fill、黄色の ball-and-stick で示した。赤、青、緑は Stx1B の3種類の結合サ イトを表す。

量体の場合は、StxBの結合サイトに対 する結合モチーフがまったく得られな かったという事実^[4]と符合している。

ペプチド・ライブラリー4本を結合 して4量体を作り(MMAtet)、Stx1B に結合させた場合、各ライブラリー部 分は、上記の場合のように分散するこ となく、Stx1Bの表側に結合した(図3)。 Stx2BについてもMDシミュレーショ ンを行った結果、同様の結合が見られ た。Stx1B-MMAtet 複合体のスナップ ショットを図3に示す。時間10nsで(図 3a)、十分結合していなかったリガンド の一部は、150nsでは(図3b)、Stx1 との距離がかなり小さくなった。

Stx1BとMMAtetの結合を定量的に 検討するために、MMAtetのアミノ酸残 基 *i* と **Stx1B**のアミノ酸残基 *k* の重心 間の距離 *d_{ik}*を計算し、結合スコア *S_{ik}* を *S_{ik}*=1/*d_{ik}と定義した。図4aに、結 合スコアの等高線のスナップショット を示す。腕の一つArm1はStx1B全体 に広がって結合しているが、他の腕 は Stx1B上の偏った領域に結合してい ることがわかる。たとえば、Arm4は、 Stx1Bの5量体の内、図の下部のバー の一番左に示した単量体との結合スコ アが高い。*

Stx1Bの5量体の各単量体、および MMAtetの各腕は、同じアミノ酸配列な ので、双方について結合スコアの和を とって集約すると、図4bのような等高 線が得られる。スコアの高い領域が、3 ~4か所あるのがわかり、これらはい ずれも縦帯状になっていて、MMAtet が、Stx1Bの限られたアミノ酸残基に 選択的に結合していることを示してい る。この選択性は、他のサンプルにつ いても見られ、かつ、選択部分はほぼ 同じであった。

どのアミノ酸が強く結合しているか を見るために、スコアの高い結合につ いて検討した。Arm1では、Stx1Bの W34、N35、D18、がスコアの高いア ミノ酸で、Arm2-4では、N55、H58、 G61、G62、が多く見られた。西川 らの最近のミュー ことができ、現実のStxB-MMAtet結 合を反映しているであろうと推論され る。また、ミューテーション実験で着 目されていないアミノ酸が、シミュレー ションでは結合に寄与していると見な せることがあるが(N55、H58など)、 以前の研究で^[6]、簡単なMDシミュレー ションにより、StxB のいくつかの残基

がリガンドの結合に寄与していること が示唆され、生物学実験に採用された。 これらのことから、本研究のMDシミュ レーションは、EHEC感染症に関する 生物学実験および薬剤の開発において、 重要な役割を担っているといえる。

テーション実験では、 D17、D18、F30、 W34、G62、 が 着 目され、これらをグ ルタミン酸、アラニ ンなどに置換すると、 結合度が著しく低下 することが示されて いる^[7]。したがって、 本研究の結果は、実 験結果との良好な一致 を示していると考える

図4 (a) 結合スコアS_{ik}の等高線のスナップショット。縦軸はMMAtet(リガンド)の各腕の識別番号、横軸は志賀毒素の アミノ酸残基 k の識別番号で、下のバーは5量体の各単量体を示す。MMAtetのアミノ酸配列は、各腕について下から MAMMARRRRA。(b) Stx1Bの5量体の各単量体およびMMAtetの各腕について和をとった結合スコアの等高線。時間 140-150ns。縦軸はMMAtetのアミノ酸配列、横軸はStx1Bのアミノ酸残基の識別番号で、各単量体のアミノ酸識別番 号は、1番目の単量体の番号1~69に集約した。

おまた・かずみ 1988年慶應義塾大学理工学部物理学科卒、 1999年同大学院博士課程修了、同大学助手。 この間、東京工業大学、日本IBMに在籍。 2001年より現職、 2002 ~ 2004年コペンハーゲン大学エルステッド 研究所研究員。 専門:計算医学。 趣味:ゴルフ、禅の文化の探求、動植物の飼育、音楽。

参考文献

- [1] 国立感染症研究所, IASR 37, 85-86 (2016).
- [2] 厚生労働省, http://www1.mhlw.go.jp/o-157/o157q_a.
- [3] 大阪府立公衆衛生研究所, 公衛研ニュース No.1 (1997).
- [4] 西川喜代孝, 志賀毒素の細胞内輸送を誘導するペプチド, 蛋白質 核酸 酵素 53, 44-51 (2008).
- [5] H. Ling et al., Structure of the Shiga-like Toxin I B-Pentamer Complexed with an Analogue of Its Receptor Gb3. Biochemistry 37, 1777-88 (1998).
- [6] K. Nishikawa, M. Watanabe, E. Kita, K. Igai, K. Omata, M.B. Yaffe, and Y. Natori, A multivalent peptide library approach identifies a novel Shiga toxin inhibitor that induces aberrant cellular transport of the toxin, *The FASEB Journal*, 20: 2597-9, 2006.
- [7] K. Tsutsuki, M. Watanabe-Takahashi, Y. Takenaka, E. Kita, and K. Nishikawa, Identification of a Peptide-Based Neutralizer That Potently InhibitsBoth Shiga Toxins 1 and 2 by Targeting Specific Receptor-Binding Regions, *Infect. Immun.* 81, 2133-2138 (2013).
- [8] M.E. Fraser et al., Structure of Shiga Toxin Type 2 (Stx2) from Escherichia coli O157:H7, J. Biol. Chem. 279, 27511–27517 (2004).
- [9] P.I. Kitov et al., Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands, Nature 403, 669-672 (2000).
- [10] J.M. Jacobson et al., The crystal structure of Shiga toxin type 2 with bound disaccharide guides the design of a heterobifunctional toxin inhibitor, *The J. Biol. Chem.* 289, 885-894 (2014).
- [11] M.E. Fraser et al., Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7, Acta Cryst. F62, 627-630 (2006).
- [12] H. Okumura, Temperature and pressure denaturation of chignolin: Folding and unfolding simulation by multibaric-multithermal molecular dynamics method, *Proteins*, 80: 2397-2416, 2012.