共同利用研究ハイライト

X線小角散乱解析が明らかにしたPDIファミリー タンパク質 ERp46及び PDI 酸化酵素 Ero 1 α の構造ダイナミクスと機能

金村 進吾 東北大学学際科学フロンティア研究所 教育研究支援者 奥村 正樹 東北大学学際科学フロンティア研究所 助教 稲葉 謙次 東北大学多元物質科学研究所 教授

1. はじめに

細胞小器官の一つである小胞体にお いて、全タンパク質の約3分の1を占 める分泌タンパク質は、二つのシステ インのチオール基間の共有結合すなわ ちジスルフィド結合の形成を伴う立体 構造形成(以下、酸化的フォールディ ングという)を受ける。一方で、非天 然型のジスルフィド結合の形成は誤っ た立体構造形成を誘起するため、小胞 体内には誤ったジスルフィド結合を修 復あるいは分解除去するシステムも存 在する。小胞体内に構造異常タンパク 質が蓄積すると神経変性疾患や糖尿病 などの疾病の原因となることが知られ る。そこで、哺乳動物細胞の小胞体に はタンパク質の品質を厳密に管理する ため、ジスルフィド結合の形成・異性 化・開裂を触媒する酵素群として20種 類以上ものProtein Disulfide Isomerase (PDI) ファミリータンパク質及び数種 類のPDI酸化酵素が存在する^[1]。本稿 では、X線小角散乱法(SAXS)によっ て明らかとなったPDIファミリータン パク質の一つERp46及びPDI酸化酵素 Ero1aの新たな構造情報を基に、小胞 体におけるジスルフィド結合形成経路 の最新の知見について概説する。

2. PDIファミリータンパク質ERp46 の構造と機能

PDIファミリータンパク質の一つ ERp46は、三つのチオレドキシン様ド メイン (Trx1, Trx2, Trx3) で構成され

ており、いずれのドメインも酸化還元 活性を示すCys-Gly-His-Cys 配列を持つ。 各ドメインの構造は、X線結晶構造解 析により決定されているが、ERp46 の全長構造における各ドメインの空間 的配置や分子全体の形状は明らかでは なかった。そこで、全長ERp46の構 造情報を得るために、酸化型と還元型 ERp46のSAXS実験を行った。その結 果、酸化型と還元型ERp46のゼロ濃度 外挿後の散乱プロファイルは非常によ く一致し、酸化還元による大きな構造 変化はなかった。ギニエ解析より、酸 化型ERp46の慣性半径(R_n)は41.7 Å、還元型は41.6Åと見積もられた。 ERp46の理論分子量が47 kDaに対し、 酸化型は52 kDa、還元型は51 kDaで

あり、いずれの状態においてもERp46 は溶液中で単量体をとることがわかっ た。さらに、酸化型と還元型 ERp46の 全体構造を解析するため、距離分布関 数 P(r) を算出し最大分子長(D_{max})を 決定した。その結果、酸化型ERp46 のDmaxは141 Å、還元型は137 Åで あり、酸化型ERp46が還元型ERp46 に比べ、わずかに大きい分子形状であ ることが示された。次に、各ドメイン の結晶構造とSAXSデータを基に、酸 化型と還元型ERp46の全長構造のダ ミーアトムモデルを構築した。その結 果、ERp46は酸化還元状態によらず三 つのチオレドキシン様ドメインは互い に相互作用することなく長いループに よって繋がっており、他のPDIファミ

図1全長の酸化型ERp46と還元型ERp46の溶液構造。上図は、ダミーアトムモデル(灰色)に重ね合 わせた代表的なリジッドボディモデルを表す。各チオレドキシン様ドメイン(Trx1, Trx2, Trx3)は X線結晶構造解析により決定している。水色のスフィアはループを示す。下図の黒点線はチオレドキ シン様ドメインをつなぐループ領域を示し、黄色のスフィアは酸化還元活性部位を示す(参考文献2 の図を改変)。

リータンパク質には見られない新規な 「開いたV字構造 | をとることが明らか となった(図1)。さらに逆相HPLCを 用いた還元変性BPTIの酸化的フォール ディングの解析により、ERp46の三つ のチオレドキシン様ドメインはBPTIの フォールディング初期過程において独 立してランダムかつ迅速にジスルフィ ド結合を導入することが示された。一 方、BPTIのフォールディング後期にお いて、PDIはU字構造内部の疎水性ポ ケットにフォールディング中間体を取 り込み、互いに向き合った二つの活性 部位が協調的に働くことで効率よくジ スルフィド結合の組換えを行うことも 示された。基質のフォールディングス テージに応じたERp46とPDIによる 基質認識およびジスルフィド結合形成 機構の違いが、効率的な基質の酸化的 フォールディングにつながることを提 唱した^[2]。

PDI酸化酵素 Ero1αの新規活性制御 機構

哺乳動物細胞においてPDIの主たる 酸化酵素であるEro1αは、小胞体内の 酸化還元環境に応じて四つのregulatory システイン(Cys94, Cys99, Cys104, Cys131)間でジスルフィド結合の架橋 様式を変えることで、自身の活性を厳

密に制御する。最近、我々のグループ は、新たに高等動物細胞のEro1ファミ リーに高度に保存されている Cys208 とCys241もEro1αの酸化活性制御 に関わることを明らかにした^[3]。実際、 Cys208とCys241をSerに置換した Ero1α変異体のPDIに対する酸化活性 を測定したところ、野生型よりも高活 性を示した^[3]。そこで、この高活性型 Ero1 α の構造情報を取得するため、野 生型と高活性型 $Ero1\alpha$ の SAXS 実験を 行った。その結果、Raが野生型では 26.6 Å、高活性型では26.2 Åと、ほ とんど同じ値を示した。ゼロ濃度外挿 後のそれぞれの散乱プロファイルもほ ぼ一致しており、SAXS解析から野生 型と高活性型は同じ溶液構造をとるこ とが強く示唆された。このことは、示 差走査熱量計による熱力学的な構造安 定性の評価において、野生型と高活性 型のEro1αがほぼ同じ変性温度を示す こととも矛盾しない。以上のことから、 Ero1aのCys208-Cys241ジスルフィ ド結合は構造安定性ではなく機能調節 に関与するジスルフィド結合であると 結論付けた。

当研究室で決定した Ero1αの結晶構 造を眺めると^[4]、Ero1αには明確な電 子密度を示さない二つの長いループ領 域が存在する。一つは四つの regulatory

システインを含むループI、もう一つ はCys208とCys241を含むループ IIである。そこで我々は、Cys208と Cys241がループIIの動的性質を制御す ることで、Ero1αの活性を制御すると 予測した。これら二つのループを含む Ero1α全長の構造情報を取得するため、 SAXSによる観測データと結晶構造を 基に、分子研の秋山教授の主導のもと Ensemble Optimization Method (EOM) 解析を行った。その結果、ある一つの リジッドボディモデルから計算した散 乱プロファイルと、実測の散乱プロファ イルとは一致しなかったが、異なるルー プ構造をもつ複数の状態の集合である と仮定すると、実測の散乱プロファイ ルとよく一致した(図3)。さらに、こ れら二つのループ構造の動きを定量的 に調べるため、EOM解析によって推 定されたモデル構造のR_gとD_{max}をプ ロットした結果、一つの値には収束せ ず、試行ごとに異なる値を示した(図4)。 このことは、溶液中でEro1αの二つの ループ領域は一つの決まった構造をと るのではなく、非常に高いフレキシビ リティを有することを示唆する。さら にここでは詳細を割愛するが、系統的 な生化学解析により、PDIがEro1αの ループIIを足場としてCys208-Cys241 ジスルフィド結合を還元することで、

図2 Ero1αの結晶構造(PDB: 3AHQ)。二つの黒点線は、結 晶構造解析において電子密度を示さない仮想のループ構 造を表す。

図3 SAXS解析によって得られた野生型 $Ero1\alpha$ (左図)と高活性型 $Ero1\alpha$ (右図)の 散乱プロファイル。各モデル構造の下のカッコ内の値はフィッティングの指標である χ^2 値を示す(参考文献5の図を改変)。 **Ero1**αのさらなる高活性化につながる ことを突き止めた^[5]。

4. おわりに

本稿で紹介したSAXS解析による ERp46の全長構造のモデル構築及び Ero1αのEOM解析は、分子科学研究所・ 秋山修志教授と共同で行ったものであ り、ここに感謝申し上げます。

図4 EOM解析によって得られた野生型Ero1α(左図)と高活性型Ero1α(右図) の R_aとD_{max}の分布(参考文献5の図を改変)。

金村 進吾(かねむら しんご) 2012年関西学院大学理工学部化学科卒業、 2014年関西学院大学大学院理工学研究科 化学専攻博士前期課程修了、2015年日本 学術振興会特別研究員DC-2、2017年東北 大学大学院生命科学研究科博士後期課程修了、 同年より現職。

研究内容:哺乳動物細胞の小胞体における ジスルフィド結合形成ネットワークの構造基 盤。

奥村 正樹(おくむら まさき) 2010年日本学術振興会特別研究員DC-2、 2011年関西学院大学大学院理工学研究科 化学専攻博士後期課程修了、同年より日本 学術振興会特別研究員PD、2012年九州大学 生体防御医学研究所学術研究員、2013年 日本学術振興会特別研究員PD、2016年東北 大学多元物質科学研究所助教、2017年より 現職。第16回日本蛋白質科学会若手奨励賞 を受賞。

研究内容:タンパク質のおりたたみにおける ジスルフィド結合の役割、酵素によるフォー ルディング中間体の認識。

稲葉 謙次(いなば けんじ) 1998年京都大学工学研究科博士課程修了、 1998年英国MRC博士研究員、2000年京都 大学ウイルス研究所博士研究員、2001年JST さきがけ21研究員、2005年JST CREST 研究員、2006年九州大学生体防御医研究所 准教授、2013年より現職。第8回日本学術 振興会賞、文部科学大臣表彰若手科学者賞、 第7回日本分子生物学会三菱化学奨励賞を 受賞。 研究内容:細胞のタンパク質品質管理機構の 分子基盤。

参考文献

- [1]Okumura, M., Kadokura, H., and Inaba, K. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. *Free Radic. Biol. Med.* 83, 314–322 (2015).
- [2]Kojima, R., Okumura, M., Masui, S., Kanemura, S., Inoue, M., Saiki, M., Yamaguchi, H., Hikima, T., Suzuki, M., Akiyama, S., and Inaba, K. Radically different thioredoxin domain arrangement of ERp46, an efficient disulfide bond introducer of the mammalian PDI family. *Structure* 22, 431–443 (2014).
- [3] Ramming, T., Okumura, M., Kanemura, S., Baday, S., Birk, J., Moes, S., Spiess, M., Jenö, P., Bernèche, S., Inaba, K., and Appenzeller-Herzog, C. A PDIcatalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero 1. *Free Radic. Biol. Med.* 83, 361–372 (2015).
- [4] Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R., and Suzuki, M. Crystal structures of human Ero 1 α reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J. 29, 3330–3343 (2010).
- [5]Kanemura, S., Okumura, M., Yutani, K., Ramming, T., Hikima, T., Appenzeller-Herzog, C., Akiyama, S., and Inaba, K. Human ER oxidoreductin-1α (Ero1α) undergoes dual regulation through complementary redox interactions with protein-disulfide isomerase. J. Biol. Chem. 291, 23952–23964 (2016).