IMS news 事業報告

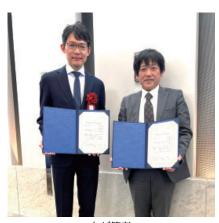
用した時間特性の評価が貴重である旨などの意見が出た。第二部では、新規ユーザーの獲得に焦点が当てて、国内外の方に使っていただくための導入時の対応についての議論がなされた。初見の方が、ユーザーとして実験に携わるまでの橋渡しが非常に重要であり、そのような橋渡し人材を既存のUVSORユーザーが担うことも議論された。第三部では、現状の課題点などが共有できた。今後の発展の中で、BL3Bおよ

び7Bのユーザーが、他のビームラインを活用することも提案がされた。次世代のUVSORに向けて、装置のアップグレードとしては、時間特性評価の充実、調整できる温度範囲の拡充、測定可能な波長範囲の拡大(主に長波長側:近赤外線)などの要望が出された。

2日目には見学会を開き、特にポテンシャルユーザーに向けて、UVSORのBL3Bおよび7Bに限らず、まんべんなく、ビームラインの紹介を行えた。

今回は学術変革領域研究(B)「STED 技術による生物と無生物をつなぐメゾスケール現象の動的解明」との共催で、また日本フラックス成長研究会、蛍光体同学会、日本結晶成長学会、日本セラミックス協会、UVSOR利用者懇談会、応用物理学会放射線分科会、総合研究奨励会「放射線科学とその応用」研究会より後援ないしは協賛をいただいた。ご協力いただきましたすべての方に厚く御礼申し上げる。

IMS news 受賞者の声


中村敏和チームリーダーに文部科学省マテリアル先端リサーチインフラ「令和6年度秀でた利用成果」

この度、文部科学省マテリアル先端リ サーチインフラより「令和6年度秀でた 利用成果」を拝受いたしました。受賞題 目は「分子性量子ビットの開発」です。

本研究は、マテリアル先端リサーチインフラ(ARIM)の共用設備を活用し、分子性量子ビットの評価と量子センシング技術の開発を推進した成果として評価されたものです。受賞者は、課題代表者である九州大学(現東京大学)の楊井伸浩先生、山内朗生さん、井上魅紅さん、折橋佳奈さん、および支援者側の分子科学研究所(分子研)の浅田瑞枝さんと中村敏和です。

近年、量子コンピューティングや 量子センシングといった量子技術の研究が世界中で活発に進められています。 これらの技術の基本的な構成要素が量 子ビットであり、量子センシングはそ の量子力学的な性質を利用したセンシング手法です。特定の量子状態が外部 環境に極めて敏感に応答するという特 徴を活かし、従来に比べて高い感度や 分解能でのセンシングの実現が期待されています。無機材料ではダイヤモンドNVセンターが有名ですが、楊井伸浩先生のグループでは金属有機構造体(MOF)に着目し、希釈色素を拡散させた光誘起状態でスピン分極が増感する分子性量子ビットを開発し、柔軟な物質設計を進めています。

本研究課題では、パルスレーザーで試料を光励起し、光励起三重項状態そのもの、あるいはそのスピン分極が移動した二重項状態の電子スピン緩和時間を測定することで、スピンコヒーレンスを見積もります。そのためには、レーザーと同期したパルス測定が可能な電子スピン共鳴(ESR)装置が不可欠です。楊井伸浩先生グループの優れた物質開発能力と、分子研が有する高度なパルスESR計測技術がARIM事業において連携し、その成果が発信されたことが高く評価され、今回の受賞に

右が筆者

至りました。

授賞式は2025年1月29日に東京ビッグサイトで開催された第24回国際ナノテクノロジー総合展・技術会議にて執り行われました。分子性量子ビット研究は非常に活発であり、今後も分子研のパルスESR装置(Bruker社製E680やE580)を用いた共同利用研究が進展することを祈念するとともに、その推進に尽力していきたいと考えております。

(中村 敏和 記)