4. 研究支援等

ここに記載しているのは,直接研究活動を行わないが研究を遂行する上でなくてはならない研究支援業務であり, 主に技術課が担当・支援しているものである。特に法人となってからは,全国の分子科学コミュニティの連帯を強め るために研究支援部門を強化してきた。法人化後に新設された部門には「安全衛生管理室」、「広報室」、「史料編纂室」 があり,引き続き活発な活動を行っている。また,平成25年度から自然科学研究機構は「研究大学強化促進事業」 の支援対象機関となり,分子研もこの事業の一環で「研究力強化戦略室」が設置され,広報室と史料編纂室は研究力 強化戦略室に発展的に含まれることになった。さらに今後,技術課はこの戦略室と連携して研究支援業務を進める事 になる。

技術課は、研究支援組織の中核になる大きな集団を構成している。分子科学研究所は、法人化後、技術課に所属する技術職員を公募で選考採用したり、研究室配属の技術職員を研究施設に配置転換したりすることによって、大型の研究施設を維持管理する部門や共同利用を直接支援する部門を増強した。平成19年度に組織編成を大きく見直したが、新しい研究センターの設置や研究所の構想により即した体制を整えるため、平成25年7月に7技術班を6技術班に再編し一部の人員配置換えも行った。(「2-5構成員」を参照)。

安全衛生管理室は、法人化に伴い、研究所の総括的な安全衛生が労働安全衛生法という強制力を持つ法律によって規制されるようになったため、その法律の意図するところを積極的かつ効率的に推進するために設置された。それまでは、設備・節約・安全委員会という意思決定のための委員会が存在していたが、安全衛生の実際の執行は技術課が一部を担当したものの、専門に執行する組織はなかった。現在、安全衛生管理室には、専任の助教と事務支援員、十名弱の兼任の職員を配置し、執行組織として多くの施策を実行している。部分的に、平成14年3月に廃止した研究施設の「化学試料室」の機能も有している。担当職員は安全衛生を維持するのに必要な資格を全て取得し任務にあたっている。

広報室は、法人化と共に設置した部門であり、研究活動報告や要覧誌の発行などに留まらず、国民により積極的に研究所で行っている研究内容を分かりやすく紹介することに重点を置き様々な活動を行ってきた。例えば分子研における研究トピックスの発信やプレスリリース、分子研ウェブサイトの整備、事業内容を紹介する動画の制作や展示室を見学者に公開するなど、研究所のアウトリーチ活動全般を担っている。これらの活動を研究力強化の立場から見直すことも含めて、今後は研究力強化戦略室として一体的に活動することになった。

史料編纂室は,法人化後に設置された支援組織としては一番新しい。法人化後まもなく迎えた創立30周年記念行事の中で分子研設立の経緯を残すことの重要性が認識された。このため,総研大葉山高等研究センターを中心に発足した「大学共同利用機関の歴史」研究プロジェクトに参加する形で史料編纂室を発足させた。分子研設立の経緯と共に,過去に所員が行ってきた研究,分子科学コミュニティの形成過程などの歴史を整理・記録してきた。今後は広報資料や研究活動等評価資料(IR資料)という観点で,研究力強化推進室の中に位置付けることとなる。

4-1 技術課

技術課は、所長に直属した技術職員の組織で、技術課長以下に6技術班14技術係を配置し、構成員は2014年4月1日現在で34名である。技術職員は,主に研究施設に配属され,それぞれの持つ高い専門技術で研究教育職員と協力し、先端的かつ独創的な研究を技術面から支え,大学共同利用機関の使命を果たすために努力している。各施設に配属された技術職員の対応する技術分野は広範囲に渡っている。機械,電気,電子,光学,情報,といった工学知識や各要素技術の技能を基に支援業務として実験機器の開発,システム開発等を行い,物理・化学・生命科学を基に物質の構造解析や化学分析等を支援している。この様に技術職員の持っているスキルを活用し,UVSORやスパコン,レーザーシステム,X線解析装置,電子顕微鏡,ESR,SQUID,NMRなど大型設備から汎用機器の維持管理,施設の管理・運用も技術職員の役割としている。さらに,科学の知識を基に研究所のアウトリーチ活動も職務として担い,広報に関する業務,出版物の作成も行っている。所内の共通業務としてネットワークの管理・運用,安全衛生管理も技術課の業務として行っている。安全衛生管理では,研究所の性質から毒物・劇物・危険物など薬品知識や低温寒剤等高圧ガスの知識,放射線管理,その他技術的な側面から毎週職場巡視を行い,分子研の安全衛生管理に寄与している。

技術職員が組織化されたのは,1975年に創設された分子科学研究所技術課が日本で最初である。技術職員が組織化したことで直接待遇改善につながったが,組織化の効果はそれだけでなく,施設や研究室の狭い枠に留まっていた支援を広く分子科学分野全体の研究に対して行うことができるようになり,強力な研究支援体制ができあがった。支援体制の横のつながりを利用し,岡崎3機関の岡崎統合事務センターと技術課が協力して最良の研究環境を研究者に提供することを目標に業務を推進している。しかし,事務組織とは違って分子研の技術職員は流動性に乏しいので,組織と個人の活性化を図るために積極的に次のような事項を推進している。

4-1-1 技術研究会

施設系技術職員が他の大学,研究所の技術職員と技術的交流を行うことにより,技術職員相互の技術向上に繋がることを期待し,1975年度,分子研技術課が他の大学,研究所の技術職員を招き,第1回技術研究会を開催した。内容は日常業務の中で生じたいろいろな技術的問題や失敗,仕事の成果を発表し,互いに意見交換を行うものである。その後,毎年分子研でこの研究会を開催してきたが,参加機関が全国的規模に広がり,参加人員も300人を超えるようになった。そこで,1982年度より同じ大学共同利用機関の高エネルギー物理学研究所(現,高エネルギー加速器研究機構),名古屋大学プラズマ研究所(現,核融合科学研究所)で持ち回り開催を始めた。その後さらに全国の大学及び研究機関に所属する技官(現,技術職員)に呼びかけ新たな技術分野として機器分析技術研究会も発足させた。現在ではさらに多くの分科会で構成された総合技術研究会が大学で開催され,さらなる発展を遂げつつある。表1に今までの技術研究会開催場所及び経緯を示す。

表 1 技術研究会開催機関

年度	開催機関	開催日	分科会	備考
昭和 50	分子科学研究所	昭和 50 年 2 月 26 日	機械	名大 (理)(工)のみ
077.∓n ∈4	八字科普班索氏	昭和 50 年 7 月 20 日	機械	学習院大など参加
四州コ	分子科学研究所	昭和 51 年 2 月	機械,(回路)	名大(工)回路技術
□77∓Π FΩ	分子科学研究所	昭和 52 年 7 月	機械	都城工専など参加
四十二 52		昭和 53 年 2 月	機械 ,(回路)	名大プラ研回路技術
昭和 53	分子科学研究所	昭和 53 年 6 月 2 日	機械,回路	技術研究会について討論会 分科会形式始める
	高エネルギー物理学研究所	昭和 53 年 10 月 27 日	機械技術	

				T
l -	分子科学研究所	昭和 54 年 7 月	機械,回路,電子計算機	電子計算機関連の分科会を創設
昭和 54	高エネルギー物理学研究所	昭和 54 年 10 月 19 日	機械	
	分子科学研究所	昭和 55 年 2 月	機械,回路,電子計算機	
I	高エネルギー物理学研究所	昭和 55 年 10 月 24 日	機械	
昭和 55	分子科学研究所	昭和 56 年 1 月 30 日	機械,回路,電子計算機,低温	低温分科会を創設 技術課長 内田 章
昭和 56	分子科学研究所	昭和 56 年 7 月	機械,回路,電子計算機,低温	
нд/н 30	高エネルギー物理学研究所	昭和 56 年 1 月 30 日	機械	
昭和 57	高エネルギー物理学研究所	昭和 58 年 3 月 17-18 日	機械,回路,電子計算機,低温	技術部長 馬場 斉 3研究機関持ち回り開催が始まる
昭和 58	分子科学研究所	昭和 59 年 3 月 2-3 日	機械,回路,電子計算機,低温	
昭和 59	名古屋大学プラズマ研究所	昭和 59 年 11 月 15-16 日	機械,ガラス,セラミック,低温回路,電子計算機,装置技術	実行委員長 藤若 節也
昭和 60	高エネルギー物理学研究所	昭和 61 年 3 月 19-20 日	機械,計測制御,低温,電子計算機,装置 技術	技術部長 山口 博司
昭和 61	分子科学研究所	昭和 62 年 3 月 19-20 日	機械,回路,電子計算機,低温	
昭和 62	名古屋大学プラズマ研究所	昭和 63 年 3 月 29-30 日	機械,回路,低温,電子計算機,装置技術	
昭和 63	高エネルギー物理学研究所	平成元年 3 月 23-24 日	機械,計測制御,低温,電子計算機,装置 技術	技術部長 阿部 實
平成元	分子科学研究所	平成 2 年 3 月 19-20 日	機械,回路,低温,電子計算機,総合技術	2ヶ所で懇談会
平成 2	核融合科学研究所	平成 3 年 3 月 19-20 日	機械,低温,計測制御,電子計算機,装置 技術	
平成 3	高エネルギー物理学研究所	平成 4 年 2 月 6-7 日	機械,低温,計測制御,電子計算機,装置 技術	
平成 4	分子科学研究所	平成 5 年 3 月 11-12 日	装置Ⅰ,装置Ⅱ,低温,電子計算機	実行委員長 酒井 楠雄 3研究機関代表者会議
平成 5	核融合科学研究所	平成 6 年 3 月 23-24 日	機械,低温,計測制御,電子計算機,装置技術	技術部長 村井 勝治 研究所間討論会
平成 6	高エネルギー物理学研究所	平成7年2月16-17日	機械,低温,計測制御,電子計算機,装置技術	技術部長 三国 晃 研究所間討論会
平成 7	分子科学研究所	平成 8 年 3 月 18-19 日	機械,回路,計測制御,電子計算機,化学分析	技術課長 酒井 楠雄 研究所間懇談会 化学分析を創設
	国立天文台・電気通信大学共催	平成 8 年 9 月 19-20 日	計測・制御,装置・回路計算機・データ処理	
平成 8	大阪大学産業科学研究所	平成 8 年 11 月 14-15 日	機器分析	初めての分散開催
	名古屋大学理学部	平成9年2月6-7日	装置開発 A,B , ガラス工作	
	北海道大学理学部	平9年2月27-28日	低温	
l –	核融合科学研究所	平成9年9月11-12日	機械,回路,低温,電子計算機,装置技術	
平成 9	静岡大学	平成 9 年 11 月 27-28 日	機器分析	工学部,情報学部,電子工学研究所 各技術部の共催
平成 10 ├	名古屋工業大学	平成 10 年 11 月 26-27 日	機器・分析	
1,22,10	高エネルギー加速器研究機構	平成 11 年 3 月 4-5 日	工作,低温,回路・制御,装置,計算機	インターネット討論会
	東北大学	平成 11 年 11 月 11 日	機器・分析	
平成 11	分子科学研究所	平成 12 年 3 月 2-3 日	装置,回路,極低温,電子計算機,ガラス 工作	インターネット技術討論会
<u> </u>	福井大学	平成 12 年 9 月 28-29 日	機器・分析	
平成 12	東北大学	平成 13 年 3 月 1-2 日	工作,装置,回路,極低温,情報・ネット ワーク,材料・物性開発,地球物理観測	
	大阪大学	平成 13 年 11 月 15-16 日	機器・分析	
平成 13	核融合科学研究所	平成 14 年 3 月 14-15 日	工作 , 装置 , 計測・制御 , 低温 , 計算機・データ処理	技術部長 大竹 勲
平成 14	東京大学	平成 15 年 3 月 6-7 日	工作,装置,回路,極低温,情報・ネット ワーク,生物科学,機器・分析,地球物理 観測,文化財保存,教育実験・実習	
平成 15	三重大学	平成 15 年 11 月 20-21 日	機器・分析	
1 345 HV 15 1			1	i e

		□□□□ 40 47 □				
	佐賀大学	平成 16 年 9 月 16-17 日	機器分析を主とし全分野			
平成 16	大阪大学	平成 17 年 3 月 3-4 日	工作,装置,回路・計測制御,低温,情報 ネットワーク,生物科学,教育実験・演習・ 実習			
	岩手大学	平成 17 年 9 月 15-16 日	機器・分析			
平成 17	分子科学研究所	平成 18 年 3 月 2-3 日	機械・ガラス工作,回路,低温,計算機, 装置	技術課長	加藤	清則
	広島大学	平成 18 年 9 月 14-15 日	安全衛生,計測制御,機器・分析など全分野			
平成 18	名古屋大学	平成 19 年 3 月 1-2 日	機械・ガラス工作,装置技術,回路・計測・ 制御,低温,情報ネットワーク,生物,分 析・環境,実験・実習			
	富山大学	平成 19 年 8 月 23-24 日	機器・分析			
平成 19	核融合科学研究所	平成 20 年 3 月 10-11 日	工作・低温 , 装置 , 計測・制御 , 計算機・データ処理	技術部長	山内	健治
	愛媛大学	平成 20 年 9 月 25-26 日	機器・分析			
平成 20	京都大学	平成 21 年 3 月 9-10 日	機械・ガラス工作,装置,回路・計測・制御,低温,情報ネットワーク,生態・農林水産,医学・実験動物,分析・物性,実験・実習・地域貢献,建築・土木,環境・安全			
	琉球大学	平成 22 年 3 月 4-5 日	機器分析,実験・実習,地域貢献,安全衛生			
平成 21	高エネルギー加速器研究機構	平成 22 年 3 月 18-19 日	機械,低温,計測・制御・回路,装置,情報・ネットワーク			
	東京工業大学	平成 22 年 9 月 2-3 日	機器分析,実験・実習,地域貢献,安全衛生			
平成 22	熊本大学	平成 23 年 3 月 17-18 日	機械・ガラス工作,装置,回路・計測・制御,低温,情報ネットワーク,生態・農林水産,医学・実験動物,分析・物性,実験・実習・地域貢献,建築・土木,環境・安全			
	信州大学	平成 23 年 9 月 8-9 日	機器分析,東日本震災関連			
平成 23	分子科学研究所	平成 24 年 3 月 8-9 日	機械・ガラス工作,回路技術,極低温技術, 情報/ネットワーク,装置運用			
	神戸大学	平成 24 年 3 月 15-16 日	実験・実習,地域貢献,安全衛生			
	大分大学	平成 24 年 9 月 6-9 日	機器・分析			
平成 24	愛媛大学	平成 25 年 3 月 7-8 日	機械・材料,電気・電子・通信,情報,建築・士木・資源,化学・物性評価,特殊・大型実験・自然観測,極低温,生物・農林水産,生命科学,実験・実習,地域貢献・技術者養成,施設管理,安全衛生管理			
	鳥取大学	平成 25 年 9 月 12-13 日	機器・分析,安全衛生			
平成 25	核融合科学研究所	平成 26 年 3 月 13-14 日	工作技術,装置技術,計測·制御技術 低温技術,情報処理技術			
平成 26	北海道大学	平成 26 年 9 月 4-5 日	機械・材料・製作,特殊・大型・自然観測,電気・電子・通信,極低温,情報,生物・農林水産,生命科学,機器・分析,実験・実習,建築・土木・資源,施設管理・安全衛生管理,地域貢献・技術者養成活動			

4-1-2 技術研修

1995年度より,施設に配属されている技術職員を対象として,他研究所・大学の技術職員を一定期間,分子研の附属施設に受け入れ技術研修を行っている。分子研のような大学共同利用機関では,研究者同士の交流が日常的に行われているが,技術者同士の交流はほとんどなかった。他機関の技術職員と交流が行われれば,組織の活性化,技術の向上が図れるであろうという目的で始めた。この研修は派遣側、受け入れ側ともに好評だった。そこで,一歩進めて,他研究機関に働きかけ,受け入れ研修体制を作っていただいた。そうした働きかけの結果,1996年度より国立天文台が実施し,1997年度には高エネルギー加速器研究機構,1998年度からは核融合科学研究所が受け入れを開始し現在も続いている。法人化後は,受け入れ側の負担や新しい技術の獲得には大きく寄与していないため,実施件数は少なくなってきた。そこで,2007年度からセミナー形式で外部より講師を招き,併せて他機関の技術職員も交えで「技

術課セミナー」を行っている。この「技術課セミナー」は今後,様々な技術分野のトピックを中心に定期的に開催する予定である。2014年度は5名の講師(所外4名,所内1名)を招き開催した。また,従来の受け入れ研修も小規模ながら続けている。

表 2,3に分子研での受け入れ状況を示す。

表 2 過去の技術研修受入状況

年 莊	□
年度	受 入 人 数(延)
平成7年度	6
平成8年度	12
平成9年度	13
平成 10 年度	7
平成 11 年度	6
平成 12 年度	13
平成 13 年度	47
平成 14 年度	96
平成 15 年度	59
平成 16 年度	8
平成 17 年度	6
平成 18 年度	6
平成 19 年度	6
平成 20 年度	25
平成 21 年度	40
平成 22 年度	21
平成 23 年度	28
平成 24 年度	15
平成 25 年度	19

表 3 平成 26 年度技術研修受入状況 (2014.4.1 ~ 2015.3.31)

氏 名	所 属	受入期間	備 考
工藤 哲也	名古屋大学全学技術センター	H26.9.8 ~ 9.12	加工技術の効率化に関する研修
足立 純一	高エネルギー加速器研究機構	H27.3.9 ~ 3.10	放射光利用技術最前線
福井 一俊	福井大	H27.3.9 ~ 3.10	放射光利用技術最前線
田中 宏和	高エネルギー加速器研究機構	H27.3.9 ~ 3.10	放射光利用技術最前線
北 宏之	友徳精機(株)	H27.3.9 ~ 3.10	放射光利用技術最前線
寺島 昭男	高エネルギー加速器研究機構	H27.3.8 ~ 3.10	放射光利用技術最前線
岡田 則夫	国立天文台先端技術センター	H27.3.9 ~ 3.10	放射光利用技術最前線
大橋 治彦	(公財)高輝度光科学研究センター	H27.3.9	放射光利用技術最前線
瀬戸山寛之	九州シンクロトロン光研究センター	H27.3.9 ~ 3.10	放射光利用技術最前線

4-1-3 人事

技術職員人事は,法人化されてからは,広く人材を確保するために,国立大学法人等採用試験や公募採用も取り入れ,即戦力,より高度な専門技術を持つ人材の採用を行ってきた。また,職員採用については技術職員の年齢構成も考慮しているが,現在の職員の年齢構成は,やや団塊となる世代が中堅職員層に見られ,ライン制の組織構造で起こる人

材登用問題も深刻になりつつある。これらを踏まえ人事についての議論は教員を交え、なるべく多くの時間を費やす ようにしている。技術職員は教員と違って人事の流動性はほとんどないため、長期間、同一職場に勤務すると、職務 に対する意識が慢性化し活力が低下しがちである。従って人事の流動は、組織と個人の活性化に重要な施策として不 可欠である。その対策として法人化前は一定の期間,所属を移して勤務する人事交流を行ってきた。しかし,法人化 後は、交流先の機関での人材確保や技術分野の一致が見られず、実施されていない状況である。現在、全国の技術職 員のネットワークを通じて、新たな人事交流の可能性を模索している。

4-1-4 受賞

早坂啓一(1995年定年退官) 日本化学会化学研究技術有功賞(1986)

低温工学協会功労賞(1991)

酒井楠雄(2004年定年退官) 日本化学会化学技術有功賞(1995) 加藤清則(2008年定年退職) 日本化学会化学技術有功賞(1997) 西本史雄(2002年辞職) 日本化学会化学技術有功賞(1999) 山中孝弥 日本化学会化学技術有功賞(2004)

石村和也 WATOC2005 Best Poster Diamond Certificate (2005)

堀米利夫 日本化学会化学技術有功賞(2005) 鈴井光一 日本化学会化学技術有功賞(2007) 吉田久史 日本化学会化学技術有功賞(2008) 水谷文保 日本化学会化学技術有功賞(2009) 日本化学会化学技術有功賞(2012) 青山正樹

4-2 安全衛生管理室

安全衛生管理室は、研究所における快適な職場環境の実現と労働条件の改善を通じて、職場における職員の安全と健康を確保するための専門業務を行うことを目的として、平成16年4月に設置された。安全衛生管理室には、室長、専任及び併任の安全衛生管理者、安全衛生管理担当者、化学物質・放射線・高圧ガス・電気・レーザーなどのそれぞれの分野を担当する作業主任者が置かれている。安全衛生管理者は、少なくとも毎週1回明大寺・山手両地区を巡視し、設備、作業方法又は衛生状態に危険及び有害のおそれがあるときは、直ちに、職員の健康障害を防止するための必要な措置を講じている。また、職場の安全衛生を推進するために必要な、作業環境測定(必要に応じ外部に委託)や、保護具、各種の計測機器、文献・資料、各種情報の集中管理を行い、分子研における安全衛生管理の中心としての活動を行っている。

また安全衛生管理室では、分子科学研究所全職員に対する安全衛生教育も行っており、そのための資料作成、各種 資格取得の促進、専門家の養成などを行っている。雇い入れ時の安全衛生教育は年度初旬に定例として行うほか、講 習テキストと講習会 DVD を用意し、年度途中の採用者に対しても、随時安全衛生教育が可能となるよう配慮している。

また長期滞在する外国人研究者に対しては,英文の安全衛生講習会テキストならびに英語版講習会 DVD を作成し,これらの教材を用いた安全衛生教育を行っている。安全衛生に必要な情報は,安全衛生管理室の WEB ページ (http://info.ims.ac.jp/safety/) にまとめて掲載しており,必要な規則や書式に即座にアクセス可能である。また,安全衛生管理室員全員のメールアドレスが登録されたメーリングリスト (safety@ims.ac.jp) も設定しており,各種の質問などに機動的に対応できる体制になっている。年に数回,分子研安全衛生委員会(岡崎 3 機関の「安全衛生委員会」に相当)と合同で連絡会議を開催し,所内の安全衛生状況に関する情報交換,連絡の徹底等が円滑に行なわれる体制を採っている。

また平成26年度には試薬管理システムの本格的運用を開始した。

4-3 社会との交流

一般市民の方々に科学の面白さ・意義を伝えるとともに、科学コミュニティの健全な発展を促すような相互交流を 醸成するための取り組みは、ますます重要性を増している。分子科学研究所では、このようなアウトリーチ活動の一 環として、他機関との連携・共同により国内の広い範囲をカバーする事業、および、岡崎の地域性を重視した事業と いう2つのタイプを実施している。前者としては、自然科学研究機構シンポジウムならびに大学共同利用機関シンポ ジウムがあり、後者は分子科学フォーラム・岡崎市民大学講座等である。

4-3-1 自然科学研究機構シンポジウム

当シンポジウムは 2006 年より年 2 回のペースで実施され,下記のようにこれまでに計 14 回開催されている。

- 第1回:「見えてきた! 宇宙の謎。生命の謎。脳の謎。科学者が語る科学最前線」, サンケイプラザ (東京都千代田区), 2006年3月21日。
- 第2回:「爆発する光科学の世界―量子から生命体まで―」,東京国際フォーラム(東京都千代田区),2006年9月 24日。
- 第3回:「宇宙の核融合・地上の核融合」,東京国際フォーラム,2007年3月21日。
- 第4回:「生命の生存戦略 われわれ地球生命ファミリーは いかにして ここに かくあるのか」東京国際フォーラム, 2007年9月23日。
- 第5回:「解き明かされる脳の不思議」,東京国際フォーラム,2008年3月20日。
- 第6回:「宇宙究極の謎」,東京国際フォーラム,2008年9月23日。
- 第 7 回:「科学的発見とは何か 「泥沼」から突然「見晴らし台へ」」, 東京国際フォーラム, 2009 年 3 月 20 日。
- 第8回:「脳が諸学を生み,諸学が脳を統合する」, 学術総合センターー橋記念講堂, 2009年9月23日。
- 第9回:「ビックリ 4Dで見るサイエンスの革新」,東京国際フォーラム,2010年3月21日。
- 第 10 回:「多彩な地球の生命―宇宙に仲間はいるのか―」, 学術総合センターー橋記念講堂, 2010 年 10 月 10 日。
- 第 11 回:「宇宙と生命—宇宙に仲間はいるのか II—」, ナディアパーク, 2011 年 6 月 12 日。
- 第 12 回: 「知的生命の可能性─宇宙に仲間はいるのか Ⅲ─」, 東京国際フォーラム, 2012 年 3 月 20 日。
- 第 13 回:「日本のエネルギーは大丈夫か? ~ E = mc^2 は人類を滅ぼすのか, 救うのか.....~」, 吹上げホール, 2012 年 9 月 29 日。
- 第14回:「分子が拓くグリーン未来」,学術総合センターー橋記念講堂,2013年3月20日。
- 第 15 回:「アストロバイオロジー」, 学術総合センターー橋記念講堂, 2013 年 10 月 14 日。
- 第16回:「天体衝突と生命進化」,名古屋市科学館サイエンスホール,2014年3月8日。
- 第 17 回:「記憶の脳科学—私達はどのようにして覚え忘れていくのか—」, 学術総合センターー橋記念講堂, 2014 年 9 月 23 日。

本シンポジウムに対する分子科学研究所の関与は次の通りである。第1回において、「21世紀はイメージング・サイエンスの時代」と銘打ったパネルディスカッション中で、岡本裕巳教授が「ナノの世界まで光で見えてしまう近接場光学」というタイトルで講演を行った。第2回目は、講演会全体の企画を分子科学研究所が中心となって行った(詳細は「分子研リポート 2006」を参照)。第7回では、加藤晃一教授が自らの体験に基づいて「研究の醍醐味とは何か」を伝える講演を行った。第11回では、大峯巖所長が「水の揺らめきの世界;揺らぎと反応と生命」というタイトルで講演を行った。第14回は、再び講演会全体の企画を分子科学研究所が中心となって行った(詳細は「分子研レター

ズ68号」を参照)。

また,講演会の開催と併せて,展示コーナーを設けてビデオやパネルを用いた説明を行なってきている。常設展示室に設置されている可搬式のグラフィックパネルや模型を適宜利用するなど,展示内容のさらなる充実に努めている。合わせて,十分な説明要員を確保するために研究者の積極的な参加も促している。

4-3-2 大学共同利用機関シンポジウム

本シンポジウムは,自然科学研究機構を含む4つの大学共同利用機関を構成する19の研究機関と宇宙科学研究所が,総合研究大学院大学と合同で開催したものである。各研究機関が「知の拠点群」として果たしている役割と,研究の推進を通じて切り拓かれた科学の広大なフロンティアの現状について,広く一般市民の方に紹介することを目指している。2010年11月20日にベルサール秋葉原にて「万物は流転する」とのテーマのもとに第1回が開催され,2011年11月26日には同会場にて第2回「万物は流転するII」,2012年11月17日には東京国際フォーラムにて第3回「万物は流転する~誕生の謎」,2013年11月16日には第4回「万物は流転する~因果と時間」,2014年11月22日には同会場にて第5回「研究者に会いに行こう!—日本の学術研究を支える大学共同利用機関の研究者博覧会」が開催された。分子科学研究所はブース展示に参加し,先端的研究成果や分子科学に関連する基本事項の解説を行っている。例えば、常設展示室に設置されている920MHz NMRの半立体模型(第2回),大型スクリーンに投影したスーパーコンピューターによるシミュレーション CG(第3回,第4回,第5回),および各種の大型分子模型(第4回,第5回)を用いて,研究の現状に関する詳しい説明を行った。

4-3-3 分子科学フォーラム

当フォーラムは「分子科学の内容を他の分野の方々や一般市民にも知らせ,また,幅広い科学の話を分子研の研究者が聞き自身の研究の展開に資するように」との趣旨のもとに,1996年より実施されている。豊田理化学研究所と共催となっており,年度毎に年間計画を豊田理化学研究所の理事会に提出している。2008年度よりは,一般市民の方々に科学の面白さ・楽しさを伝える「市民一般公開講座」として新たに位置づけられ,2009年度には,一元的で効率的な活動の展開を目指して,広報室を中心とした実施体制の整備を進めた。この際,講演回数をこれまでの年6回から4回に変更し 密度の高い講座を開講することで より魅力的な『分子科学フォーラム』の実現を図った。以来,幅広い分野で先導的な立場におられる研究者や技術者を講師としてお招きし,多様なテーマで講演を実施している。2013年度は,第1回目にサイエンス・ジャーナリストのお二人による座談会形式で実施するなど,新たな試みを行った。どの回も,100名を超える多数の参加者があり,特に,通算第100回記念となった2014年1月31日は,追加の椅子を多数準備する必要があったほどの盛会であった。2013年度より,隣接する岡崎高校のスーパーサイエンス事業のご協力を頂き,多数の高校生の皆さんにも参加して頂いている。さらに,小学生以下の小さなお子さんの参加も見うけられるようになった。若い参加層の皆さんから活発な質問をお寄せ頂き,講演を盛り上げて頂いている。地域に根差した公開講座会として,広く認知されてきたものと評価される。

本年度の実施状況は以下の通り。

回	開催日	テーマ	講演者
101	2014. 5.23	ヒッグス粒子から迫る宇宙誕生の謎	浅井 祥仁 (東京大学大学院理学系研究科教授)
102	2014. 8.28	ダイオウイカ,奇跡の遭遇 ——最新技術で迫る深海の世界——	窪寺 恒己 (国立科学博物館標本資料センター コレクションディレクター)
103	2014.11.21	分子とつくる未来 身近になってきた有機エレクトロニクス 回るたんぱく質,歩くたんぱく質の仕組みを 探る	山本 浩史 (分子科学研究所教授) 飯野 亮太 (岡崎統合バイオサイエンスセンター教授)
104	2015. 3.18	総力と本気で地震を克服する	福和 伸夫 (名古屋大学減災連携研究センター長・教授)

4-3-4 分子研コロキウム

分子研コロキウムは既に800回を越える歴史のあるセミナーであり,元々のコロキウムの趣旨は,全ての教授,准教授(当時は助教授)が参加し,各人の専門分野を越えて学問的な刺激を受ける場を提供することであった。しかし,数年少し前程度からその趣旨が薄れてきており,自分の研究内容に関係するセミナーのみ聴講し,専門外の講演には関知しないとの風潮が少なからず広まってしまった。このような聴講スタイルであれば通常の研究セミナーや学会発表でその目的は達成可能である。コロキウムの立ち上げ当時とは,スタッフの数も研究分野の広がりも大きく異なることは事実であるが,やはり当初の趣旨に立ち返りコロキウムの存在意義を再度高めるべく,2010年度から分子研コロキウムの改革に着手した。分子研に関連する研究分野の最先端で自ら先陣を切って研究をされている方々を講師としてお招きし,多くの教授・准教授が参加できるように,毎月第3金曜日に開催される教授会議終了後にコロキウムを行うことを原則とした。講演者の先生には通常の研究発表よりも研究の背景や今後の展開等の大局的な内容を多めに話して頂き,講演者・参加者の皆で深く自由に議論できるある種のブレーンストーミングの様な場を提供できることを目指している。コロキウム終了後には飲み物を片手にリラックスした雰囲気で更に議論を掘り下げるような懇談会も毎回開催している。

以下は2014年度に行われた分子研コロキウムの一覧である。

回	開催日	テーマ	講演者
859	2014. 4.18	光で動く高分子 (Photomobile Polymer Materials)	池田 富樹 (中央大学研究開発機構教授)
860	2014. 5.21	The Importance of Keeping It Cool: Atoms and Molecules below 1 μK	Prof. Guido PUPILLO (ISIS, University of Strasbourg and CNRS, Strasbourg)
861	2014. 6.20	創発イオントロニクス (Emergent Iontronics)	岩佐 義宏 (東京大学大学院工学系研究科 / 理化学研 究所創発物性科学研究センター教授)
862	2014. 9.26	有機発光材料の新展開 —高効率遅延蛍光材料の登場— Development of Novel Organic Light Emitting Materials —High Efficiency Delayed Fluorescence—	安達千波矢 (九州大学大学院工学府応用化学部門教授, 最先端有機光エレクトロニクス研究セン ター(OPERA)センター長)
863	2014. 9.30	Electronic Structure in Highly Excited Optical Lattices	Prof. Dieter Jaksch (Clarendon Laboratory, University of Oxford)

864	2014.11.17	Single Molecule Spectroscopy Using STM	川合
865	2015. 1.16	エレクトライドの物質科学と応用展開	細野 秀雄 (東京工業大学フロンティア研究機構&応 用セラミックス研究所教授)
866	2015. 2.20	磁場・電場・電磁場による有機化合物の空 間操作と捕捉:低温分子科学の新展開	百瀬 孝昌 (プリティッシュコロンビア大学教授)
867	2015. 2.24	Towards Scalable Quantum Memories	Prof. lan A. Walmsley (University of Oxford)

4-3-5 岡崎市民大学講座

岡崎市教育委員会が,生涯学習の一環として岡崎市民(定員 1,500 人)を対象として開講するもので,岡崎3機関の研究所が持ち回りで講師を担当している。

分子科学研究所が担当して行ったものは以下のとおりである。

開催年度	講師	テーマ
1975 年度	赤松 秀雄	化学と文明
1976 年度	井口 洋夫	分子の科学
1980 年度	廣田 榮治	分子・その形とふるまい
1981 年度	諸熊 奎治	くらしの中のコンピュータ
1982 年度	長倉 三郎	分子の世界
1983 年度	岩村 秀	物の性質は何できまるか
1987 年度	齋藤 一夫	生活を変える新材料
1988 年度	井口 洋夫	分子の世界
1991 年度	吉原經太郎	光とくらし
1994 年度	伊藤 光男	分子の動き
1997 年度	齋藤 修二	分子で宇宙を見る
2000 年度	茅 幸二	原子・分子から生命体までの科学
2003 年度	北川 禎三	からだで活躍する金属イオン
2006 年度	中村 宏樹	分子の科学,独創性,そして東洋哲学
2009 年度	平田 文男	生命活動における『水』の働き
2013 年度	大峯 巖	水,水,水

4-3-6 その他

(1) 岡崎商工会議所(岡崎ものづくり推進協議会)との連携

岡崎商工会議所は,産学官連携活動を通じて地元製造業の活性化と競争力向上を目的に「岡崎ものづくり推進協議会」を設立し,多くの事業を行っている。この協議会と自然科学研究機構岡崎3研究所との連携事業の一環で,会員である市内の中小企業との交流会を,平成19年度から行っている。これらは主に技術課の機器開発班と電子機器・ガラス機器開発班が中心となって対応し,交流会によって出来あがった協力体制は現在も継続している。また,平成26年度は隔年で開催される「岡崎ものづくりフェア2014」へ大学・研究機関として参加出展した。

(2) コミュニティサテライトオフィス講演会

岡崎大学懇話会(市内4大学で構成)・岡崎商工会議所が運営するコミュニティサテライトオフィスにおいて,地 域社会や地域産業の活性化に還元する主旨で一般市民及び企業関係者を対象として実施している。

開催日	テーマ		講館	TĪ.	
2009. 1.15	分子を活用する近未来技術 ~ 分子科学研究所が関与するエネル ギー問題や環境問題等への取組み ~	西	信之	教	授
2010. 1.19	次世代の太陽電池について	平本	昌宏	教	授

4-4 理科教育への協力

分子科学研究所は,愛知県や岡崎市という地域性を重視して,小学校から高等学校までの様々なレベルで理科教育への協力を行ってきている。岡崎市内の高等学校には,文部科学省に応募して採択されたスーパーサイエンスハイスクール(以下 SSH と略す)研究指定校,愛知県教育委員会より指定を受けた愛知スーパーハイスクール研究校,さらに,科学技術振興機構(JST)のサイエンスパートナーシッププロジェクト(SPP)に応募して採択された SPP 実施校など,理科教育の充実を目指して独自の取り組みを行っているところも多い。分子研は,岡崎の 3 研究所で連携しつつ,もしくは単独で,これらの高校の活動に協力している。一方,小中学校を対象とした事業としては,出前授業・岡崎市のスーパーサイエンススクール推進事業(SSS)・職場体験などが挙げられる。また,教員対象の支援も行っている。各事業について,本年度に実施されたものを中心として,以下に記載する。

4-4-1 スーパーサイエンスハイスクール

愛知県立岡崎高等学校が 2002 ~ 2005 年度に SSH 指定校となったことを契機として,分子科学研究所は同校の SSH 事業に協力してきた。 2007 年度には,再度,指定を受け,5 年間にわたる第二次 SSH 事業がスタートしている。これまでは,スーパーサイエンス部の支援が主な活動であったが,2011 年度に同校が「コア SSH」としての指定を 受けたのに際して,他校も含む理科教員の研修をお願いしたいとの依頼が分子研に寄せられた。これに対応して,2012 年 2 月 4 日には NMR の原理と応用に関する研修会を実施し,県内から8名の高校教員が参加して午前・午後 を費やして講義ならびに実習を受講した。 2013 年 3 月 9 日には,「分子を探る,放射光の科学」として UVSOR において研修会を実施した(5校7名が参加)。 2014年 2 月 10 日には SSH 進路オリエンテーション(2年生理系対象の 講演会)の講師対応も行った。また,魚住グループによる「国際化学オリンピック」に参加された同校生徒さんに対する実験指導・支援(見事,銀メダルを受賞された)も行った。

岡崎高校への支援としてはその他に、イングリッシュコミュニケーション研修に対して当研究所の外国人博士研究 員が講師として参加した。

4-4-2 あいち科学技術教育推進協議会

SSH 研究指定校,愛知スーパーハイスクール研究校,さらに,SPP 実施校である愛知県下の16 高校が,2009 年度に「あいち科学技術教育推進協議会」を立ち上げた。これは,文部科学省指定 SSH 中核拠点育成プログラムの一貫として,SSH で得た知識や組織力を活用し,全県的な取り組みとして理数教育の推進を目指したものである。当協議会は,毎年「科学三昧 in あいち」というイベントを開催している。当イベントには,県内の多数の高校から総数300 名以上の参加者が集い,科学や技術についての先進的教育活動の紹介が行われる。第1回は2009 年12月24日に岡崎コンファレンスセンターにて開催され,分子研からは「酸化物半導体薄膜を利用した光波干渉と光発電」「デスクトップ電子顕微鏡で観るナノの世界」と題した2つの体験型ブースを出展した。第2回は,2010 年12月24日にウィルあいち(名古屋市)にて開催された。第3回(2011 年12月27日),第4回(2012 年12月26日),第5回(2013 年12月26日),第6回(2014年12月25日)は,再び岡崎コンファレンスセンターにて開催された。分子研では,毎回,研究所紹介の展示ブースを出展し,また,高校生による英語でのプレゼンテーションに対して,所内の学生・研究者がコメンテーターとして指導・助言を行っている。

4-4-3 国研セミナー

このセミナーは、岡崎3機関と岡崎南ロータリークラブとの交流事業の一つとして行われているもので、岡崎市内の小・中学校の理科教員を対象として、岡崎3機関の研究教育職員が講師となって1985(昭和60)年12月から始まり、毎年行われている。

分子科学研究所が担当したものは以下のとおりである。

	開催日	テーマ		講:	币
2	1986. 1.18	分子研の紹介	諸熊	奎治	教 授
3	1986. 6. 7	シンクロトロン放射とは (加速器・分光器・測定器の見学)	渡邊 春日	誠 俊夫	助教授 助教授
6	1986.10. 4	人類は元素をいかに利用してきたか	齋藤	一夫	教 授
9	1987. 6.13	レーザーの応用について	吉原經	壓太郎	教 授
12	1987. 9.26	コンピュータで探る分子の世界	柏木	浩	助教授
15	1988. 7. 2	目で見る低温実験・発光現象と光酸化現象	木村	克美	教 授
18	1988.10.29	人工光合成とは何か	坂田	忠良	助教授
21	1989. 6.24	星間分子と水——生命を育む分子環境——	西	信之	助教授
24	1989.10.21	常温での超伝導は実現できるか	那須奎	€一郎	助教授
27	1990. 6.23	目で見る結晶の生成と溶解 ——計算機による実験(ビデオ)——	大瀧	仁志	教 授
30	1990.10.20	電気と化学	井口	洋夫	所 長
33	1991. 6.22	自己秩序形成の分子科学 分子はどのようにしてリズムやパターンを作り出すか	花崎	一郎	教 授
37	1991.12.14	からだと酸素,そしてエネルギー:その分子科学	北川	禎三	教 授
39	1992. 7. 7	サッカーボール分子の世界	加藤	立久	助教授
42	1992.11.13	炭酸ガスの化学的な利用法	田中	晃二	教 授
45	1993. 6.22	化学反応はどのように進むか?	正畠	宏祐	助教授
48	1993.10. 1	宇宙にひろがる分子の世界	齋藤	修二	教 授
51	1994. 6.21	分子の動き	伊藤	光男	所 長
54	1995. 6.20	生体内で活躍する鉄イオン――国境なき科学の世界――	渡辺	芳人	教 授
57	1996. 6.28	分子を積み上げて超伝導体を作る話	小林	速男	教 授
60	1997. 6.13	生体系と水の分子科学	平田	文男	教 授
63	1998. 6.12	電子シンクロトロン放射光による半導体の超微細加工 ——ナノプロセスとナノ化学——(UVSOR 見学)	宇理須	恆雄	教 授
66	1999. 6. 8	レーザー光で,何が見える? 何ができる?	猿倉	信彦	助教授
69	2000. 6. 6	マイクロチップレーザーの可能性	平等	拓範	助教授
72	2001. 6. 5	ナノメートルの世界を創る・視る	夛田	博一	助教授
75	2002. 6. 4	クラスターの科学――原子・分子集団が織りなす機能――	佃	達哉	助教授
78	2003. 6.24	科学のフロンティア――ナノサイエンスで何ができるか?	小川	琢治	教 授
81	2004. 6.22	生命をささえる分子の世界——金属酵素のしくみを探る	藤井	浩	助教授
84	2005. 6.28	環境に優しい理想の化学合成	魚住	泰広	教 授
87	2006. 6.20	電気を流す分子性結晶の話	小林	速男	教 授
90	2007. 6.15	光で探る生体分子の形と機能	小澤	岳昌	准教授

93	2008. 6.17	宇宙の光を地上で作る――シンクロトロン光源――	加藤	政博	教	授
96	2009. 6. 9	化学結合をいかに教えるか	平本	昌宏	教	授
101	2010.11. 9	生命の営みと「水」 ――化学・物理の理論とコンピュータで探る分子スケールの生命現象――	平田	文男	教	授
104	2011.11. 1	原子のさざ波と不思議な量子の世界	大森	賢治	教	授
105	2012. 6. 5	電気はどうして流れるのか	中村	敏和	准教)授
109	2013.11.26	身近になってきた有機エレクトロニクス	山本	浩史	教	授
112	2014.11.28	生物の時間をはかるタンパク質時計	秋山	修志	教	授

4-4-4 小中学校での出前授業

岡崎市内の小中学校を対象に、物理・化学・生物・地学に関わる科学実験や観察を通して、科学への興味・関心を 高めることを目的に,岡崎市教育委員会や各小中学校が企画する理科教育に協力している。

分子科学研究所が担当したものは以下のとおりである。

岡崎市教育委員会(出前授業)

対象校	開催日	テーマ	講	師		
六ツ美北中東海中	2002. 1.25	光学異性体とその活用	魚住 泰広	教 授		
東海中	2003. 2.18	計算機を使って分子を見る	谷村 吉隆	助 教 授		
常磐南小	2005. 2. 7	光の不思議	岡本 裕巳	教 授		
東海中	2006. 2. 8	モルフォ蝶とナノ化粧品の秘密	小川 琢治	教 授		
美川中	2007. 2.26	生物から学ぶ光と色	小澤 岳昌	助 教 授		
矢作西小	2007.12. 4	原子の世界	櫻井 英博	准 教 授		
六ツ美北部小	2008.10.10	ミクロの世界の不思議	平本 昌宏	教 授		
矢作中	2009.12. 4	分子と光の秘密	平本 昌宏	教 授		
岩津中	2010.10. 6	分子と光の秘密	平本 昌宏	教 授		
東海中	2010.11.30	電気を流す物ってどんな物?	中村 敏和	准 教 授		
岩津中	2011. 7.11	電気を流す物の性質,磁界のはたらき	中村 敏和	准 教 授		
河合中	2011.10.17	計算機シュミレーションで見る原子・ 分子の世界	伊藤 暁	助 教		
常磐中	2011.10.19	光の不思議	寺内かえで	技術職員		
六ツ美中	2012. 1.17	魔法の物質「触媒」ってなんだろう?	唯 美津木	准 教 授		
竜南中	2012. 1.27	分子と光の秘密	平本 昌宏	教 授		
矢作北中	2012. 2.14	目で見えないものを見る光	岡本 裕巳	教 授		
額田中	2012. 6.21	植物から学ぶ人工光合成	正岡 重行	准 教 授		
岩津中	2012. 6.29	魔法の物質「触媒」ってなんだろう?	唯 美津木	准 教 授		
甲山中	2012. 7.11	分子と光の秘密	平本 昌宏	教 授		
竜南中	2012.10.19	計算機シミュレーションで見る原子・ 分子の世界	伊藤 暁	助 教		
矢作中	2012.11. 8	光と分子	長坂 将成	助 教		
城北中	2013. 2.12	小さすぎる世界を覗いてみよう	鹿野 豊	特任准教授		

			(
南中	2013.10. 9	計算機シミュレーションで見る原子・ 分子の世界	伊藤	暁	助	教
常磐中	2013.11.20	バイオフィルムって何?	吉岡	資郎	助	教
竜海中	2013.11.27	分子と光の秘密	平本	昌宏	教	授
矢作北中	2013.12. 6	「電気はどうして流れるの!?」 電磁誘 導・超伝導を体験しよう	中村	敏和	准	教 授
葵中	2014. 1.16	光で探る分子のダイナミックな姿	大島	康裕	教	授
竜南中	2014. 3.14	Chemistry meets computing	倉重	佑輝	助	教
六ツ美北中	2014. 7.14	光エネルギーとタンパク質	古谷	祐詞	准	教 授
城北中	2014. 9.26	分子と光の秘密	平本	昌宏	教	授
河合中	2014.10.20	結晶学入門 ~分子のかたち,私たちのかたち~	村木	則文	特任	助教
新香山中	2014.10.30	時間の顕微鏡——目では見えない高速 な出来事を観察する光の技	岡本	裕巳	教	授
北中	2015. 1.29	水中での有機分子変換反応 ~水と油の関係改善でグリーン反応~	大迫	隆男	助	教
竜南中	2015. 3. 6	計算化学~実験でも暗記でもない化学	福田	良一	助	教

岡崎市立小豆坂小学校(親子おもしろ科学教室)

	開催日	テーマ	講師
1	1996.12. 5	極低温の世界 (液体窒素)	加藤 清則 技官
3	1997.12. 4	いろいろな光(紫外線,赤外線,レーザー光)	大竹 秀幸 助手
17	2004.11.30	波と粒の話	大森 賢治 教授
23	2007.11.27	身の回りにも不思議はいっぱい	青野 重利 教授

スーパーサイエンススクール推進事業

対象校	開催日	テーマ		講	師	
岩津中	2014. 2. 7	光で探るダイナミックな分子の姿	大島	康裕	教	授
新香山中	2014.12.16	電磁誘導・超伝導を体験しよう	中村	敏和	准	教 授

4-4-5 職場体験学習

岡崎市内及び近隣の中学校及び高等学校の要請により、職職場体験学習として中・高生の受け入れに協力している。

年度	受入件数	参加者数	体験受入機関名
2007	5	10	岡崎市立甲山中学校,愛知県立豊田西高等学校,岡崎 市立竜海中学校,豊橋市立中部中学校,岡崎市立竜南 中学校
2008	4	12	岡崎市立甲山中学校,豊川市立音羽中学校,岡崎市立 六ツ美中学校,岡崎市立竜南中学校
2009	4	8	岡崎市立甲山中学校,豊川市立音羽中学校,岡崎市立 東海中学校,岡崎市立竜南中学校

2010	4	9	岡崎市立甲山中学校,岡崎市立竜海中学校,岡崎市立 竜南中学校,豊田市立高岡中学校
2011	6	7	豊田市立猿投台中学校,岡崎市立竜海中学校,岡崎市 立常盤中学校,岡崎市立額田中学校,岡崎市立竜南中 学校,豊田市立藤岡中学校
2012	4	12	岡崎市立竜海中学校,岡崎市立岩津中学校,岡崎市立 美川中学校,岡崎市立額田中学校
2013	5	10	豊田市立上郷中学校,岡崎市立常磐中学校,岡崎市立 北中学校,岡崎市立河合中学校,岡崎市立竜海中学校
2014	5	7	豊田市立上郷中学校,岡崎市立竜海中学校,岡崎市立 東海中学校,岡崎市立福岡中学校,岡崎市立美川中学校

4-4-6 その他

(1) 岡崎市小中学校理科作品展

岡崎の3研究所は、岡崎市小中学校理科作品展に輪番(原則として3年に1回)でブース出展を行っている。分子科学研究所は、2007年にパネル展示のほか、子どもたちが色素増感太陽電池の作製や酸化チタンカラフル塗装を体験できるブースを出展した。2009年には、一般公開の宣伝と未来の科学者賞の案内を行った。2010年は、常設展示室から3つの体験型展示物(ローレンツ力の実験、光の波長とモノの見え方、アンジュレータの磁石を使った実験)を設置し、来場者に体験していただいた。2012年には、一般公開の宣伝とともに、3D分子シミュレーションにインタラクティブに参加できる展示を行い、多くの子どもたちに参加して頂いた。

(2) 未来の科学者賞

岡崎3機関では,2009年度より理科教育並びに科学の将来の発展に資することを目的とし,豊かな発想や地道な努力の積重ねなど特色のある自由研究を行った児童又は生徒を褒賞するため,岡崎市小中学校理科作品展に出展された自由研究課題の中から,岡崎3機関の各研究所の研究者により構成される選考委員会により優秀者を選出し,未来の科学者賞を授与している。賞の運営は一般公開を行う研究所が持ち回りで行っており,分子科学研究所においては,2012年10月20日の一般公開日に,選考委員会により選出された小学生8名,中学生2名の計10名の受賞者に対し,トロフィー,表彰状及び記念賞品の贈呈による表彰を行った。

(3) 地域連携「生徒作品表彰」

愛知教育大学附属岡崎中学校による写生会が毎年度,岡崎3機関において,「建物の配置や組み合わせの美しい自然科学研究機構を写生する」ことを目的として行われ,同校の生徒に対して岡崎3機関と触れる機会を提供している。この写生会は,2004年度の自然科学研究機構の創設以前より,毎年度受け入れている。この写生会をきっかけに,岡崎3機関を地域において身近な存在として感じてもらう機会として,2011年度から,同校の教育活動の一部である写生会における優秀者を岡崎3機関として表彰し,同校における生徒の教育の賛助となるよう,同校の協力の下,賞状等を贈呈している。2014年度は,7月に同校の式方式により表彰を行った。

4-5 一般公開

研究活動や内容について、広く一般の方々に理解を深めていただくため研究所内を公開し、説明を行っている。現 在では岡崎市にある3つの研究所が輪番に公開を実施しているので,3年に1回の公開となっている。公開日には実 験室の公開と講演会が行われ,約2000人の見学者が分子研を訪れる。

回数	実施月日	備考
第1回	1979.11. 9 (Fri)	創設記念一般公開
第2回	1980.11.15 (Sat)	
第3回	1981.11.14 (Sat)	3 研究所同時公開
第4回	1985. 5.11 (Sat)	10 周年記念一般公開
第5回	1988.11. 5 (Sat)	入場者 1700 人
第6回	1991.10.26 (Sat)	入場者 1974 人
第7回	1994.11.12 (Sat)	入場者 2700人
第8回	1997.11.15 (Sat)	入場者 2400 人
第9回	2000.10.21 (Sat)	入場者 1183 人
第 10 回	2003.10.25 (Sat)	入場者 1600 人
第 11 回	2006.10.21 (Sat)	入場者 2058 人
第 12 回	2009.10.17 (Sat)	入場者 1346 人
第 13 回	2012.10.20 (Sat)	入場者 1126 人

4-6 見学者受け入れ

自然科学研究機構岡崎3機関の見学者の受け入れは,岡崎統合事務センター総務部総務課企画評価係が窓口になっ て行われており,その中で分子科学研究所の見学分については,技術課が中心となってその対応にあたっている。 2010年5月に展示室を開設し、個人の見学受け入れを開始した。年間およそ300名が来訪している。

団体申込み

年度	受入件数	見学者数	実施機関名
1990	10	250	(財)レーザー技術総合研究所 東京工業大学理学部応用物理学科 ほか
1991	3	110	静岡県新材料応用研究会 名古屋大学工学部電気・電子工学科 ほか
1992	7	162	三重大学技術職員研修会 慶応義塾大学理工学部化学科 ほか
1993	9	211	(財)名古屋産業科学研究所超伝導調査研究会 東京工業大学化学科 ほか
1994	7	145	(社)日本化学工業界技術部 慶応義塾大学理工学部化学科 ほか
1995	4	122	日本電気工業会名古屋支部 静岡県高等学校理科研究会 ほか
1996	7	180	(財)新機能素子研究開発協会 明治大学付属中野中学・高等学校 ほか
1997	9	436	(財)科学技術交流財団 慶応義塾大学理工学部化学科 ほか
1998	6	184	東京地方裁判所司法修習生 開成高等学校 ほか
1999	8	206	愛知県商工部 愛知県高等学校視聴覚教育研究協議会 ほか
2000	12	225	(財)衛星通信教育振興協会 東京農工大学 ほか
2001	8	196	中部経済産業局統計調査員協会 愛知県立豊田西高等学校 ほか
2002	5	118	関西工業教育協会 静岡県立浜松西高等学校 ほか
2003	8	146	中部経済連合会 愛知県立一宮高等学校 ほか
2004	11	198	中部電力(株) 立命館高等学校 ほか
2005	10	317	自動車技術会中部支部 慶熙大学(Kyung hee University) ほか
2006	8	144	山梨県立都留高等学校 西三河地区理科教育研究会 ほか
2007	9	349	(社)電気学会 愛知県立安城南高等学校 ほか
2008	14	294	自動車技術会中部支部 愛知県立岡崎北高等学校 ほか
2009	8	154	東京都立科学技術高等学校 (株)デンソー技研センター ほか

2010	18	401	東海大学付属高輪台高等学校 愛知県技術士会 ほか
2011	13	222	山梨県立都留高等学校 トヨタ紡織株式会社基礎研究所 ほか
2012	14	200	愛知県がんセンター 福井県立藤島高等学校 ほか
2013	11	289	愛知教育大学 福井県立藤島高等学校 ほか
2014	9	167	愛知教育大学,立命館高等学校,名古屋石田学園星城高等学校,東海大学付属高輪台高等学校,静岡県立浜松南高等学校,山梨県立日川高等学校,東京都立多摩科学技術高校, 愛知県立岩津高等学校,岡崎市商工会議所

(2003年度から2006年度までの見学者数には,職場体験の参加者数を含む。)

個人申込み (分子研展示室)

年度	受入件数	見学者数
2010	13	33
2011	13	35
2012	3	9
2013	4	9
2014	5	25