分子研リポート2022

現状・評価・将来計画
「分子研リポート 2022」目次

1. 序 言...1

2. 分子科学研究所の概要 ...3
 2-1 研究所の目的...3
 2-2 沿 革 ..3
 2-3 組 織 ..6
 2-4 運 営 ..8
 2-4-1 運営顧問. ..8
 2-4-2 研究顧問. ..8
 2-4-3 産学連携研究アドバイザー ..9
 2-4-4 運営会議. ..9
 2-4-5 運営会議人事選考部会. ..10
 2-4-6 運営会議共同研究専門委員会..10
 2-4-7 学会等連絡会議...11
 2-4-8 教授会議..11
 2-4-9 主幹・施設長会議..12
 2-4-10 各種委員会等..12
 2-5 研究領域...16
 2-6 研究施設...22
 2-7 研究部門等...24
 2-8 構成員..25
 2-8-1 構成員. ..25
 2-8-2 現 員. ..31
 2-8-3 人事異動状況..32
 2-9 財 政...34
 2-10 岡崎共同施設...38
 2-10-1 岡崎情報図書館..38
 2-10-2 岡崎コンファレンスセンター..38
 2-10-3 岡崎共同利用研究者宿泊施設..38
 2-10-4 職員会館..38
 2-11 知的財産...39

3. 共同研究と大学院教育 ..41
 3-1 共同利用研究..42
 3-1-1 共同利用研究の概要...42
 3-1-2 2022 年度の実施状況...42
 3-1-3 共同利用研究実施件数一覧...55
 3-1-4 分子研研究生会プログラム...56
 3-2 国際交流と国際共同研究 ...59
 3-2-1 外国人客員部門等及び国際交流...59
 3-2-2 岡崎コンファレンス...62
 3-2-3 日韓共同研究...62
5. 各種事業..95
 5-1 新分野創成センター（自然科学研究機構）...97
 5-2 光・量子飛躍フラッシュシッププログラム Q-LEAP（文部科学省）..................................98
 5-3 ムーンショット型研究開発事業（内閣府／科学技術振興機構）.....................................99
 5-4 大学連携研究設備ネットワークによる研究設備共用促進事業.......................................100
 5-5 マテリアル先端リサーチインフラ ARIM（文部科学省）...103
 5-6 分子科学国際共同研究拠点の形成..118
 5-6-1 国際共同研究事業の財源...118
 5-6-2 分子研国際インターンシッププログラム（IMS-IIP）..119
 5-6-3 分子研アジア国際インターンシッププログラム（IMS-IIPA）....................................120
 5-6-4 短期外国人研究者招へいプログラム..120
 5-7 ネットワーク型研究加速事業（自然科学研究機構）..121

4. 研究支援等...75
 4-1 技術推進部..76
 4-1-1 技術研究会..77
 4-1-2 技術研修..77
 4-1-3 人 事..78
 4-1-4 受 賞..78
 4-2 安全衛生管理室..79
 4-3 研究力強化戦略室..80
 4-4 社会との交流...81
 4-4-1 一般公開..81
 4-4-2 分子科学フォーラム...82
 4-4-3 市民向けシンポジウム...82
 4-4-4 見学者受け入れ...84
 4-4-5 その他...84
 4-5 理科教育への協力..85
 4-5-1 スーパーサイエンスハイスクール...85
 4-5-2 コスモサイエンスコース...85
 4-5-3 あいち科学技術教育推進協議会...85
 4-5-4 国研セミナー__86
 4-5-5 小中学校での出前授業...86
 4-5-6 戦場体験学習..87
 4-5-7 その他...87
 4-6 情報発信...88

3-3 大学院教育...64
 3-3-1 特別共同利用研究員...64
 3-3-2 総合研究大学院大学二専攻..65
 3-3-3 オープンキャンパス..69
 3-3-4 体験入学...70
 3-3-5 総研大アジア冬の学校...71
 3-3-6 統合生命科学研究教育コース群...72
 3-4 その他..73
 3-4-1 分子研コロキウム..73
6. 研究活動の現状

6-1 論文発表状況

6-2 メゾスコピック計測研究センター

6-3 協奏分子システム研究センター

6-4 理論・計算分子科学研究領域

6-5 光分子科学研究領域

6-6 物質分子科学研究領域

6-7 生命・錯体分子科学研究領域

6-8 特別研究部門

6-9 社会連携研究部門

6-10 研究施設等

7. 点検評価と課題

7-1 運営顧問による点検評価

7-2 光分子科学研究領域の評価

7-3 生命・錯体分子科学研究領域の評価
8．研究施設の現状と将来計画297
 8-1 極端紫外光研究施設（UVSOR）298
 8-2 機器センター ..303
 8-3 装置開発室 ..306
 8-4 計算科学研究センター ...307
 8-5 生命創成探究センター ...309

9．資料 ...311
 9-1 歴代所長 ...311
 9-2 運営顧問（2004〜） ...312
 9-3 外国人運営顧問（2004〜）313
 9-4 運営会議委員（2004〜） ...314
 9-5 大学共同利用機関法人自然科学研究機構第三期中期目標期間実績報告書317
 9-6 大学共同利用機関法人自然科学研究機構第4期中期目標365
 9-7 大学共同利用機関法人自然科学研究機構第4期中期計画367
 9-8 自然科学研究機構分子科学研究所規則リンク集374
分子科学とは、豊かな自然において多様な物質循環、エネルギー変換を司っている「分子」についての知識を深め、卓越した機能をもつ分子系を創成することを目指す学問です。分子科学研究所は、そのような分子科学の研究の中核拠点として実験的研究および理論的研究を行うとともに、広く研究者の共同利用に供することを目的として1975年に設立された大学共同利用機関です。国際的な中核共同研究センターとして、国内外の分子科学研究を先導するとともに、生命科学・天文科学など、分子が関与する広範な関連分野と協同して、科学の新たな研究領域を創出することを目的としており、現在、理論・計算分子科学、光分子科学、物質分子科学、生命・錯体分子科学の4つの研究領域とそれらを繋ぐ協奏分子システム研究センターおよび、メソスコピック計測研究センターで研究基盤を構築しています。さらに、極端紫外光研究施設（UVSOR）を始めとする研究施設を擁し、分子の構造、反応、機能についての先鋭的な基礎研究を進め、分子の新たな可能性を探っています。また、分子研独自の産学協同研究を推進することを目的に、2019年度には「社会連携研究部門」を設置し、2018年度から、新たな試みとして分子科学分野を世界的に牽引することが期待される卓越教授、および、施設の高度化などを担う人材として主任研究員の2つの新しい人事システムが始まりました。2019年度からは、理論・計算分子科学、光分子科学、物質分子科学、生命・錯体分子科学の4つの研究領域を支える重要な人材を所に迎えることで、研究所のさらなる活性化が期待されます。

このリポートには、2022年度における各研究グループと、所としての活動状況が述べてあります。分子研では(1)「大学連携研究設備ネットワークによる設備相互利用の促進」、(2)「マテリアル先端リサーチインフラ」、(3)「ムーンショット目標6研究開発プロジェクト「大規模・高コヒーレンスな動的原子アレー型・誤り耐性量子コンピュータ」等の特別プロジェクトが進行中です。

また、国際的事業として(1)「分子研国際インターンシッププログラム（IMS-IIP）」と(2)「分子研アジア国際インターンシッププログラム（IMS-IIPA）」などの特徴ある国際共同を推進しています。後者は、アジア諸国（特にタイ、マレーシア）の若手研究者を1～6ヶ月派遣し、研究室での研究体験と成果発表による人材育成を行なっています。

分子研の人的流れは常に活発であり、2022年度も多くの人事異動がありました。8月1日付で中村彰彦准教授（静岡大学農学部応用生命学科教授）がクロスアポイントメント教員として着任され、5年間の研究開発を始められました。一方、5月31日付で物質分子科学研究領域の小林玄器准教授が、8月31日付で理論・計算分子科学研究領域の南谷英美准教授が、9月30日付で協奏分子システム研究センターの古賀信康准教授が、3月31日付で生命・錯体分子科学研究領域の草本哲郎准教授が転出されました。ここでは、研究室の主宰者のお名前のみを書かせていただきましたが、多くの助教、主任研究員の方々が着任あるいは転出されました。転出された先生方に、分子研の科学と技術を支えてこられたことに感謝するとともに、新たな職場での活躍を期待し、分子研にも所外から御貢献いただけるようお願い申し上げます。

研究顧問をお勤めいただいている、北川進京都大学物質・細胞統合システム拠点拠点長とJames M. Lisyイリノイ大学教授、産学連携研究アドバイザーをお願いしている菊池昇、株式会社コンポン研究所代表取締役所長と福田伸、三井化学株式会社研究開発本部参与には、2022年5月9日～11日にオンラインにて全ての研究室主宰者から提示された情報を利用し、内容を整理した。
われる2022年度の研究計画の発表会に参加頂き、その活動への提言をいただきました。外国人運営顧問のDavid A. Leigh マンチェスター大学教授には、2023年3月6～8日に生命・錯体分子科学領域の、Matthias Weidemüllerハイデルベルグ大学副学長には、2023年3月22日～27日に光分子科学研究領域の研究活動評価を実施していただきました。

2022年度もCOVID-19が猛威をふるい、国内外で人の移動が制限された1年でしたが、2022年の秋から入国制限が徐々に緩和されたことに伴い、教員・学生の国際会議出席のための海外出張などが再開され、海外からの研究者の訪問も始まりました。しかしながら、研究会やシンポジウムは一部を除き会場参加とオンラインを併用するハイブリッドなどで開催されました。幸い、2022年度も岡崎地区では深刻な感染状況には陥ることなく、比較的穏やかにこの1年を過ごすことができました。

2023年3月
自然科学研究機構
分子科学研究所 所長
渡辺 芳人
2. 分子科学研究所の概要

2-1 研究所の目的
分子科学研究所は、物理の基礎である分子の構造とその機能に関する実験的研究並びに理論的研究を行うとともに、化学と物理科学の境界から生命科学にまでまたがる分子科学の研究を推進するための中核として、広く研究者の共同利用に供されることを目的として設立された大学共同利用機関である。物理観、自然観の基礎を培う研究機関として、広く物質科学の諸分野と共通の知識と方法論を提供することを意図している。

限られた資源のなかで、生産と消費の上に成り立つ物質文明が健全に保持されるためには、諸物質の機能を深く理解し、新しい利用を図るのみならず、さらに進んで物質循環の原理を取り入れなければならない。生命分子をも含む広範な分子の形成と変化に関する原理、分子と光の相互作用、分子を通じて行われるエネルギー変換の機構等に関する研究は、いずれも物質循環の原理に立つ新しい科学・技術の開発に貢献するものである。

2-2 沿革
1960年頃から分子科学研究者の間に研究所設立の要望が高まり、社団法人日本化学会の化学研究将来計画委員会においてその検討が進められた。

1965.12.13 日本学術会議は、「分子科学研究所」（仮称）の設置を内閣総理大臣に勧告した。
1973.10.31 学術審議会は、「分子科学研究所」（仮称）を緊急に設立することが適当である旨、文部大臣に報告した。
1974.4.11 文部大臣裁定により、東京大学物理研究所に分子科学研究所創設準備室（室長：井口洋夫前東京大学物理研究所教授、定員3名）及び分子科学研究所創設準備会議（席長：山下次郎前東京大学分子科学研究所長、学識経験者35人により構成）が設置された。
1974.7.6 分子科学研究所創設準備会議において、研究所の設置場所を岡崎市の現敷地と決定した。
1975.4.22 国立学校設置法の一部を改正する法律（昭50年法律第27号）により「分子科学研究所」が創設され、初代所長に赤松秀雄前横浜国立大学工学部長が任命された。同時に、分子構造研究系（分子構造学第一研究部門、同第二研究部門）、電子構造研究系（基礎電子化学研究部門）、分子構造研究系（物理化学研究部門、分子構造研究部門）、機器センター、装置開発室、管理部（庶務課、会計課、施設課、技術課）が設置された。
1975.12.22 外国人評議員の設置が制度化された。
1976.5.10 理論研究系（分子基礎理論第一研究部門、同第二研究部門）、相関領域研究系（相関分子科学研究部門）、化学試料室が設置された。
1976.11.30 実験棟第一期工事（5,115 m²）が竣工した。
1977.4.18 相関領域研究系相関分子科学研究部門が廃止され、相関領域研究系（相関分子科学第一研究部門、同第二研究部門）、電子計算機センター、極低温センターが設置された。
1977.3.1 大学院特別研究学生の受入れが始まる。
1977.5.2 国立学校設置法の一部を改正する法律により生物科学総合研究機構（基礎生物学研究所、生物学研究所）が設置されることに伴い、管理部を改組して分子科学研究所管理局とし、生物科学総合研究機構の事務を併せ処理することとなった。管理局に庶務課、人事課、主計課、経理課、建築課、設備課、技術課が置かれた。
1978.3.7 分子科学研究所研究棟（2,752 m²）が竣工した。
1978.3.11 装置開発棟（1,260 m²）、機器センター棟（1,053 m²）、化学試料棟（1,063 m²）が竣工した。
1978.4.1 電子構造研究系に電子状態動力学研究部門、電子構造研究部門が、分子構造研究系に基礎光化学研究部門が設置された。
1979.3.1 電子計算機センター棟（1,429 m²）が竣工した。
1979.3.24 実験棟第二期工事（3,742 m²）、極低温センター棟（1,444 m²）が竣工した。

分子科学研究所の概要 3
1979. 4. 1 分子構造研究系に分子動力学研究部門が設置され、管理務部（庶務課、人事課、国際研究協力課）、臨接部（主計課、経理課）、建築課、設備課）、技術課に改組された。
1979. 11. 8 分子科学研究所所創設及び式が挙行された。
1981. 4. 1 第二代研究所所長を長倉三郎東京大学物性研究所教授が任命された。
1981. 4. 14 国立大学設置法の一部を改正する法律により、分子科学研究所と生物科学総合研究機構（基礎生物学研究所、生理学研究所）は総合され、岡崎国立共同研究機構として一体的に運用されることになった。
1981. 4. 1 理論研究系に分子物理理論系第三研究部門が設置され、管理務局が岡崎国立共同研究機構管理局となり、技術課が研究所所属となった。
1982. 4. 1 研究施設として極端紫外光実験施設（UVSOR）が設置された。
1982. 6. 30 極端紫外光実験棟第 1 階工事（1,281 m²）が竣工した。
1983. 3. 30 極端紫外光実験棟第 2 階工事（1,463 m²）が竣工した。
1983. 4. 1 電子構造研究系に分子エネルギー変換研究部門が、分子集団研究系に分子集団動力学研究部門、極端紫外光研究部門が設置された。
1983. 11. 10 極端紫外光実験施設ストレージリング装置に電子貯蔵が成功した。
1984. 2. 27 極端紫外光実験施設の拡大が行われた。
1984. 4. 11 研究施設として、錯体化学実験施設（錯体合成研究部門、錯体触媒研究部門）が設置された。流動研究部門が設置され、分子合成研究部門が設置された。
1985. 5. 10 分子科学研究所設立 10周年記念式典が挙行された。
1987. 4. 1 第三代研究所所長に井口洋夫分子科学研究所教授が任命された。
1989. 2. 28 分子科学研究所南実験棟（3,935 m²）が竣工した。
1991. 4. 1 第四代研究所所長に伊藤光男前東北大学教授が任命された。
1993. 4. 1 第五代研究所所長に茅幸二慶應義塾大学教授が任命された。
1993. 5. 12 分子科学研究所創立 20周年記念式典が挙行された。
2002. 2. 28 山手 2号館（統合バイオサイエンスセンター、計算科学研究センター）（5,149 m²）が竣工した。
2003. 8. 20 山手 4号館（分子科学研究所分子科学研究所）（3,813 m²）が竣工した。
2002. 3. 11 山手 1号館 A（動物実験センター、アイソトープ実験センター）（4,674 m²）が竣工した。
2003. 12. 2 極端紫外光実験施設創設 20周年記念式典が挙行された。

4 分子科学研究所の概要
2004. 3. 1 山手 5 号館（NMR）（664 m²）が竣工した。
2004. 3. 8 山手 3 号館（統合バイオサイエンスセンターなど）（10,757 m²）が竣工した。
2004. 4. 1 国立大学法人法により、国立天文台、核融合科学研究所、基礎生物学研究所、理学研究所、分子科学研究所が統合再編され、大学共同利用機関法人原子科学研究機構が創設された。岡崎国立共同研究機構管理局が、大学共同利用機関法人原子科学研究機構岡崎統合事務センターとなり、総務部（総務課、国際研究協力課）、財務部（財務課、調達課、施設課）に改組された。
2004. 4. 1 理論研究系から理論分子科学研究所に改組された。計算分子科学研究所（計算分子科学第一研究部門、計算分子科学第二研究部門、計算分子科学第三研究部門）が設置された。分子スケールナノサイエンスセンターに、先導分子科学研究部門が設置され、界面分子科学研究部門、分子クラスター研究部門が廃止された。極端紫外光実験施設が、極端紫外光研究施設に改組された。安全衛生管理室が設置された。
2004. 4. 1 第六代研究所長に中村宏樹分子科学研究所教授が任命された。
2005. 5. 20 分子科学研究所創設 30 周年記念式典が挙行された。
2007. 4. 1 研究系及び機械化学実験施設が廃止され、理論・計算分子科学研究所領域（理論分子科学第一研究部門、理論分子科学第二研究部門、計算分子科学研究所領域、理論分子科学研究部門、計算分子科学研究部門、計算分子科学研究部門、計算分子科学研究部門）が設置された。分子スケールナノサイエンスセンターに、ナノ計測部門、ナノ構造研究部門が設置され、分子金属素子・分子エレクトロニクス研究部門、ナノ触媒・生命分子素子研究部門、ナノ光計測研究部門が廃止された。分子制御レーザー開発研究センターに、先端レーザー開発研究部門、超高圧物性測定器開発研究部門、極端精密光計測研究部門が設置された。機器センターが新たに設置された。広報室及び史料編纂室が設置された。
2010. 3. 30 実験棟改修第 1 期工事（耐震及び全面改修）が竣工した。
2010. 4. 1 第七代研究所長に大塚昌義京都大学福井謙一記念研究センターリサーチリーダーが任命された。
2011. 3. 30 実験棟改修第 2 期工事（耐震及び全面改修）が竣工した。
2012. 4. 1 分子スケールナノサイエンスセンターが廃止され、協奏分子システム研究センター（階層分子システム解析研究部門、機能分子システム創成研究部門、生体分子システム研究部門）が設置された。
2013. 10. 1 広報室及び史料編纂室が廃止され、研究力強化戦略室が設置された。
2013. 12. 6 極端紫外光科学研究施設改設 30 周年記念式典が挙行された。
2016. 4. 1 第八代研究所長に川合真紀東京大学大学院新領域創成科学研究科教授、理化学研究所理事長特別補佐が任命された。
2017. 4. 1 分子制御レーザー開発研究センターが廃止され、メソズキャピック計測研究センター（物質量子計測研究部門、極微計測研究部門、広帯域相関計測解析研究部門）が設置された。
2018. 4. 1 岡崎統合バイオサイエンスセンターが廃止され、生命創成探究センターが設置された。特別研究部門が設置された。
2019. 4. 1 社会連携研究部門が設置された。
2020. 3. 31 共同研究棟 A 棟、共同研究棟 B 棟及び共同研究棟 C 棟の改修工事が竣工した。
2021. 4. 1 共同研究棟 D 棟の改修工事が竣工した。
2022. 4. 1 第九代研究所長に渡辺芳人総合研究大学院大学理事が任命された。

分子科学研究所の概要 5
2-3 組 織

大学共同利用機関法人自然科学研究機構

役 員 会

機構長

監事

経営協議会

教育研究評議会

研究力強化推進本部

企画戦略室

役員会

機構会議

事 務 局

事務局長等

総務課

人事労務課

財務課

研究協力課

施設・資産マネジメント室

監査室

国立天文台
核融合科学研究所
基礎生物学研究所
生理学研究所
分子科学研究所

台長（副機構長）
所長（副機構長）
所長（副機構長）
所長（副機構長）
所長（副機構長）

プロジェクト室
科学研究部

管理部
技術部

研究部門

研究施設

研究領域

研究施設

研究領域

技術課等

技術課等

技術推進部等

新分野創成センター
アストロバイオロジーセンター
生命創成探究センター
国際連携研究センター

岡崎共通研究施設・岡崎統合事務センター等
分子科学研究所の概要

I. 理論・計算分子科学研究領域 [研究主幹]
- 理論分子科学第一研究部門
- 理論分子科学第二研究部門
- 計算分子科学研究部門（一部併任）
- 理論・計算分子科学研究部門 [客員]

計算科学研究センター (岡崎共通研究施設)

II. 光分子科学研究領域 [研究主幹]
- 光分子科学第一研究部門 (一部併任)
- 光分子科学第二研究部門
- 光分子科学第三研究部門
- 光分子科学第四研究部門 [客員]

極紫外光研究施設
- 光源加速器開発研究部門
- 電子ビーム制御研究部門
- 光物性測定器開発研究部門
- 光化学測定器開発研究部門

研究組織
- 光分子科学第三研究部門
- 光分子科学第四研究部門 [客員]

III. 物質分子科学研究領域 [研究主幹]
- 電子構造研究部門
- 電子物性研究部門 （併任）
- 分子機能研究部門
- 物質分子科学研究部門 [客員]

IV. 生命・錯体分子科学研究領域 [研究主幹]
- 生体分子機能研究部門 (一部併任)
- 生体分子情報研究部門 (一部併任)
- 錦体触媒研究部門
- 錦体性研究部門
- 生命・錦体分子科学研究部門 [客員]

協奏分子システム研究センター [センター長]
- 隣接分子システム解析研究部門 (一部併任)
- 機能分子システム開発研究部門
- 生体分子システム研究部門 (併任)

メソコピック計測研究センター [センター長]
- 物質量子計測研究部門 （併任）
- 纖微計測研究部門 (一部併任)
- 広帯域相関計測解析研究部門 (一部併任)

特別研究部門
- 社会連携研究部門

研究施設
- 結晶紫外光研究施設 [施設長]
- 機器センター [センター長]
- 装置開発室 [室長]
- 計算科学研究センター [センター長] (岡崎共通研究施設)

安全衛生管理室

研究力強化戦略室

運営会議 教授会議

[研究総主幹]

研究長　運営顧問　研究顧問

長 記入技術推進部

[注]外国人客員と研究施設客員はそれぞれの研究領域の客員部門で対応する。また、研究部門間の併任は、研究領域を跨ぐことも可能であり、適宜、人事流動等に応じて見直す。
分子科学研究所は、全国の大学共同利用機関としての機能をもつと同時に独自の研究・教育のシステムを有している。この項では、これらに関する研究所運営の組織とそれぞれの機能について説明する。

2-4 運営

分子科学研究所は、全国の大学共同利用機関としての機能をもつと同時に独自の研究・教育のシステムを有している。この項では、これらに関する研究所運営の組織とそれぞれの機能について説明する。

2-4-1 運営顧問

法人組織となって、法律上は自然科学研究機構に研究と教育に関する研究評議会（機構外委員、機構内委員、約半数ずつ）が置かれるようになった（機構に属する分子科学研究所には置かれない）。また、新たな組織として機構の経営に関する経営協議会（機構外委員、機構内委員、約半数ずつ）も機構に置かれるようになった。その影響で、法人化前に法律上、各研究所に置かれていた評議員会（所外委員のみから構成）や経営協議員会（所外委員、所内委員、約半数ずつ）は消滅した。各研究所では内部組織について法律上の規定はなく、独自の判断での設置が可能であるが、それらの内部組織はすべて所長の諮問組織となる。法人化前、研究所に置かれていた評議員会の主な機能は、①所長選考、②事業計画その他の管理運営に関する重要事項の検討、であったが、法人化後、これらは基本的には法人全体の問題として、機構長・役員会が教育研究評議会・経営協議会に諮る事項になった。

自然科学研究機構では創設準備の段階から各研究所の自律性を保つことを基本原則として、機構憲章を作成した。その精神に基づき、上記①、②の機能は法律上の組織だけに任せるのではなく、各研究所別に適切な内部組織を置くことになった。ただし、機能①については、所長の諮問組織で審議するのは不適当なため、形式的には機構長の諮問組織的な位置付けで、その都度、各研究所別に大学共同利用機関長選考委員会を設置することにした。その委員は教育研究評議会と経営協議会の機構外委員も候補に加えて、機構外から機構長によって選ばれる。一方、機能②については必要に応じて各研究所で適切な内部組織（所長の諮問組織）を構成することになった。その結果、分子科学研究所では運営顧問制度（外国人評議員に代わる外国人運営顧問も含む）を発足させた。第一期中期計画期間（2004年度〜2009年度）の6年間の運営顧問は国内4名、海外2名で運用、第二期中期計画期間（2010年度〜2015年度）は、海外2名、国内3名で運用、第三期中期計画期間（2016年度〜2021年度）は国内4名と海外2名で運用した。第四期中期計画期間（2022〜2027年度）に入り、国内3名、海外2名の他に産学連携アドバイザーを2名追加した。

運営顧問（2022年度）
菊池 昇 株式会社コンポン研究所代表取締役所長
長谷部 信行 株式会社日立製作所ライフ事業統括本部CSO
瀧川 仁 高エネルギー加速器研究機構物質構造科学研究所協力研究員

外国人運営顧問（2022年度）
WEIDEMÜLLER, Matthias Vice-Rector, Ruprecht-Karl University Heidelberg
LEIGH, David A. Royal Society Research Professor & Sir Samuel Hall Chair of Chemistry, The University of Manchester

2-4-2 研究顧問

分子科学研究所では、法人化の前から所長が研究面を諮問するために研究顧問制度を導入している。第一期中期計画期間では国内3名の研究顧問が、所内の各研究グループによる予算申請ヒアリングに参加し、それぞれについて提案し、所長はその提案結果を参照しつつ各研究グループに配分する研究費を決定してきた。第二期中期計画期間は国際的な研究機関としての研究面を中心に諮問することとし、国外委員も追加することとした。第三期中期計画期間から国内外各1名で運用している。
2-4-3 産学連携研究アドバイザー

第四期中期計画期間（2022年度～2027年度）より、分子科学の分野において特に優れた研究業績を有する者又は産学連携関係に特に精通した者に、研究所の産学連携研究に関する指導、助言等をお願いする「産学連携研究アドバイザー」を新たに設けた。産業界で研究所長などの責を担っているアドバイザーから見て、基礎研究が中心となっている分子科学研究所の個々の研究者の研究課題や成果がどのように受け止められるのかをフィードバックして頂くための制度である。また、アドバイザーが有するネットワークを通じて、分子科学研究所の研究が産業界に広く知られることも期待することもある。

産学連携研究アドバイザー（2022年度）

菊池 昇 株式会社コンポン研究所代表取締役所長
福田 伸 三井化学株式会社研究開発本部参与

2-4-4 運営会議

運営会議は所長の諮問組織として設置され、現在は、所外委員10名、所内委員10名の合計20名の組織である。所外委員は、分子科学研究者コミュニティである関連学会から派遣される委員会組織の学会等連絡会議で候補が選出され、所長が決定する。所内委員は、研究主幹、研究施設・センター長を中心として、所長が決定する。運営会議は教授会議と連携をとりながら所長候補、研究教育職員人事、共同研究、その他の重要事項について審議、検討する。所長候補の検討は、大学共同利用機関長選考委員会から依頼を受けて運営会議で行われる。研究教育職員人事については、運営会議の中で選ばれた所外委員5名、所内委員5名で構成される人事選考部会の審査を運営会議の審議と見なす。一方、共同研究については、まず、運営会議の下に置かれた共同研究専門委員会で原案を作成して、それにについて運営会議で審議するという方式をとってきた。2023年度からは、より審査の迅速化を図るため、専門委員会を廃止すると同時に、所外6名、所内6名からなる共同利用研究部会を設置して、随時申請などへの対応を柔軟に行える体制を整えることとなっている。

運営会議委員（任期2022.4-2024.3）（◎：議長 ○：副議長）

秋吉 一成 京都大学大学院工学研究科教授
岩佐 義宏 东京大学大学院工学系研究科教授
忍久保 洋 名古屋大学大学院工学研究科教授
髙橋 聡 東北大学多元物質科学研究科教授
唯 美津木 名古屋大学物質科学国際研究センター教授
芳賀 正明 中央大学理工学部名誉教授
福井 賢一 大阪大学大学院基礎工学研究科教授
真越 文隆 東京大学大学院総合文化科学研究科教授
○村越 敬 北海道大学大学院理学研究院教授
吉澤 一成 九州大学先端物質科学研究科教授
○秋山 修志 協奏分子システム研究センター教授
飯野 亮太 生命・錯体分子科学研究領域教授
石崎 章仁 理論・計算分子科学研究領域教授
分子科学研究所の概要

魚住 泰広
生命・錯体分子科学研究領域教授

江原 正博
理論・計算分子科学研究領域教授

岡本 裕巳
メソスコピック計測研究センター教授

解良 聡
光分子科学研究領域教授

斉藤 真司
理論・計算分子科学研究領域教授

山本 浩史
協働分子システム研究センター教授

横山 利彦
物質分子科学研究領域教授

2.4.5 運営会議人事選考部会

分子科学研究所における研究教育職員候補者（教授、准教授、助教および主任研究員）は、専任、客員を問わず、全て公募による自薦、他薦の応募者の中から人事選考部会において選考する。また、特任准教授（若手独立フェロー）に加えて 2017 年度より導入された特別研究部門の卓越教授も人事選考部会で選考することになった。人事選考部会の委員は 2 年ごとに運営会議の所内委員 5 名と所外委員 5 名の計 10 名によって構成される。人事選考部会で審議した結果は運営会議の審議結果として取り扱われる。所長はオブザーバーとして人事選考部会に参加する。なお、人事選考部会の委員は必要に応じて所内外から専門委員を加えることができる。また、助教、特任准教授（若手独立フェロー）、主任研究員の選考に関しては専門委員を含む小委員会を、生命創成研究センター（分子研兼務）教授、准教授等の選考に関しては専門委員を含む選考委員会を、人事選考部会の下に置いている。人事選考部会の審議結果は運営会議の所長より所長に答申され、所長は教授会議（後述）でその結果を審査し、可否の投票等によって了解を得たうえで、最終決定する。

専任の教授、准教授を任用する場合には、まず教授会議メンバーによる懇談会において選考研究分野及び募集方針の検討を行い、それに基づいて作成された公募文案を人事選考部会、教授会議で審議した後、公募に付する。助教から准教授、准教授から教授への内部昇任は原則として認められていない。助教は 6 年を目途に転出することを推奨されているが、法制化された任期があるわけではない。なお、1999 年 1 月から法人化直前の 2004 年 3 月までに採用された助教（2003年 4 月以前は研究系の助教だけ）には 6 年の任期（法制化された任期）と 3 年ごとの再任が規定されたが、法人化による見直しによって、6 年の任期を超えて勤務を継続する場合は再任手続きを経たのち、任期のない助教に移行した。

人事選考部会委員（2022，2023 年度）（○：部会長）

秋吉 一成（京大院教授）
赤木 修志（分子研教授）

忍久保 洋（名大院教授）
飯野 亮太（分子研教授）

芳賀 正明（中央大名誉教授）
○石崎 章仁（分子研教授）

福井 賢一（大阪院教授）
岡本 裕巳（分子研教授）

吉澤 一成（九大教授）
山本 浩史（分子研教授）

2.4.6 運営会議共同研究専門委員会

全国の大学等との共同利用研究は分子研の共同利用機関としての最も重要な機能の一つである。本委員会では、共同利用研究計画（課題研究、協力研究、研究会等）に関する事項等の調査を行う。半年毎（前、後期）に、申請された共同利用研究に対して、その採択及び予算について審議し、運営会議に提案する。

運営会議共同研究専門委員会の委員は、運営会議委員 6 名以内と運営会議の議長等が委嘱する運営会議委員以外の者 6 名以内によって構成される。
運営会議共同研究専門委員会委員（2022，2023年度）（○：委員長）

大内 幸雄（東工大院教授）
須藤 健（岡山大院教授）
高橋 聡（東北大教授）
唯 美津木（名大教授）
村越 敬（北大院教授）

○魚住 泰広（分子研教授）
齊藤 真司（分子研教授）
横山 利彦（分子研教授）
岡崎 圭一（分子研准教授）
樫山 優恵（分子研准教授）

2-4-7 学会等連絡会議

所長の要請に基づき学会その他の学術団体等との連絡、運営会議委員各候補者等の推薦等に関することについて、検討し、意見を述べる。所長が議長を務める。

学会等連絡会議構成員（2022年度）

【所外委員】
（日本化学会推薦）
相田 美砂子（広島大特任教授）
辻 康之（京都大名誉教授）

（日本物理学会推薦）
関山 明（大阪大院教授）
吉村 一良（京都大院教授）

（日本放射光学会推薦）
熊坂 崇（高輝度光科学研究センター室長）

（錯体化学会推薦）
速水 真也（熊本大院教授）

（分子科学会推薦）
岩田 耕一（學習院大教授）
恩田 健（九州大院教授）

（日本生物物理学会推薦）
小松崎 民樹（北海道大教授）

【所内委員】
飯野 亮太（分子研教授）
岡本 裕巳（分子研教授）
小林 大樹（分子研教授）

2-4-8 教授会議

分子科学研究所創設準備委員会座長の申し送り事項に基づいて、分子研に教授会議を置くことが定められている。法人化の際も教授会議を継続することを決めた。所長が議長を務める。同会議は分子研の専任・客員の教授・准教授および主任研究員で構成され、研究及び運営に関する事項について調査審議し、所長を補佐する（一部の議案については、特任教授、特任准教授も教授会議に参画する）。所長候補者の選出に当たっては、教授会議に選挙管理人を置き、その指示に従い、教授会議は運営会議から独立した会議体として独自の見識のもとに候補者を選出し、運営会議に提案しその審議結果に対し教授会議として了承するかどうかを審議する。また、研究教育職員の任用に際しては人事選考部会からの報告結果を審議し、教授会議としての可否の投票を行う。
2-4-9 主幹・施設長会議

主幹・施設長会議は、所長の諮問に応じて研究所の運営等の諸事項について審議し、所長を補佐する。所長が議長を務める。そこで審議事項の大半は教授会議に提案され、審議の上、決定する。特任助教（分子科学研究所特別研究員）及びIMSフェロー等の選考に関する審議を行う。主幹・施設長会議の構成員は各研究領域の主幹、研究施設長・センター長等の教授で、所長が招集し、主催する。

2-4-10 各種委員会等

上記以外に次表に示すような“各種の委員会”があり、研究所の諸活動、運営等に関するそれぞれの専門的事項が審議される。詳細は省略する。

(1) 分子科学研究所の各種委員会

<table>
<thead>
<tr>
<th>会議の名称</th>
<th>設置の目的・審議事項</th>
<th>委員構成</th>
<th>設置根拠等</th>
<th>実施日</th>
</tr>
</thead>
<tbody>
<tr>
<td>点検評価委員会</td>
<td>研究所の設置目的及び社会的使命を達成するため自ら点検及び評価を行い研究所の活性化を図る。</td>
<td>所長、研究総主幹、研究主幹、研究施設の長、本部研究連携室の研究所所属の研究教育職員、技術推進部長、他</td>
<td>点検評価規則</td>
<td>-</td>
</tr>
<tr>
<td>将来計画委員会</td>
<td>研究所の将来計画について検討する。</td>
<td>所長、研究総主幹、教授数名、准教授数名</td>
<td>委員会規則</td>
<td>-</td>
</tr>
<tr>
<td>放射線安全委員会</td>
<td>放射線障害の防止に関する重要な事項、改善措置の勧告。</td>
<td>取扱主任者、研究所の職員若干名（放射線発生装置所有グループ及びエックス線発生装置所有グループをそれぞれ1グループ以上含む）総務部長、技術推進部長、安全衛生管理室長</td>
<td>放射線障害予防規則</td>
<td>-</td>
</tr>
<tr>
<td>極端紫外光研究施設運営委員会</td>
<td>研究施設の運営に関する重要な事項、施設利用の採択に関する調査。</td>
<td>研究施設長、研究施設の教授、准教授及び主任研究員、教授又は准教授4名、職員以外の研究者7名</td>
<td>委員会規則、2022.8.19、2023.3.2</td>
<td></td>
</tr>
<tr>
<td>機器センター運営委員会</td>
<td>センターの管理運営に関する重要事項。</td>
<td>センター長、センターの研究教育職員、センター以外の分子研の研究教育職員若干名、職員以外の研究者若干名</td>
<td>委員会規則</td>
<td>2022.7.4</td>
</tr>
<tr>
<td>装置開発室運営委員会</td>
<td>装置開発室の運営に関する重要事項。</td>
<td>(原則)室長、研究教育職員8名、技術職員若干名、所外の研究者及び技術者若干名、技術推進部長</td>
<td>委員会規則</td>
<td>2022.11.28</td>
</tr>
<tr>
<td>安全衛生委員会</td>
<td>安全衛生管理に関する事項。</td>
<td>(原則)各研究室から各1名、施設から必要数</td>
<td>委員会規則、管理規則</td>
<td>2022.6.30、12.15</td>
</tr>
<tr>
<td>図書委員会</td>
<td>購入図書の選定。他</td>
<td>各研究室から各1名、施設から必要数</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ネットワーク委員会</td>
<td>情報ネットワークの維持、管理運営。</td>
<td>各研究領域から各1名、施設から必要数</td>
<td>随時メールで対応</td>
<td>-</td>
</tr>
<tr>
<td>設置根拠の欄</td>
<td>分子科学研究所で定めた規則，略式で記載。記載なきは規定文なし。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>表以外に，分子研コロキウム係，自衛消防隊組織がある。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 岡崎3機関等の各種委員会等

<table>
<thead>
<tr>
<th>会議の名称</th>
<th>設置の目的・審議事項</th>
<th>分子研からの委員</th>
<th>設置根拠等</th>
<th>実施日</th>
</tr>
</thead>
<tbody>
<tr>
<td>岡崎3機関所長会議</td>
<td>研究所相互に関連のある管理運営上の重要事項について審議するとともに円滑な協力関係を図る。</td>
<td>所長</td>
<td>所長会議運営規則</td>
<td>2022.4.19, 5.26, 6.21, 7.19, 9.20, 10.18, 11.15, 12.20, 2023.1.17, 2.21, 3.28</td>
</tr>
<tr>
<td>岡崎3機関職員福利厚生委員会</td>
<td>職員レクリエーションに関する事項及び職員会館の運営に関すること。他</td>
<td>研究教育職員1</td>
<td>委員会規則</td>
<td>2022.7.12</td>
</tr>
<tr>
<td>岡崎情報セキュリティ管理運営委員会</td>
<td>岡崎3機関における情報セキュリティの確保及び岡崎情報ネットワークの管理運営に関する重要事項。</td>
<td>研究総主幹，教授1</td>
<td>委員会規則</td>
<td>2023.3.22</td>
</tr>
<tr>
<td>岡崎情報セキュリティ管理運営専門委員会</td>
<td>岡崎3機関における情報セキュリティと岡崎情報ネットワークの日常の管理。将来における岡崎情報セキュリティ及びネットワークの整備，運用等について調査審議。</td>
<td>教授1</td>
<td>委員会規則</td>
<td>(メール審議) 2022.4.14, 5.11, 7.11, 8.5, 9.8, 9.13, 12.16, 2023.2.9, 2.22 (Web会議) 2022.10.28, 2023.12.23, 3.22</td>
</tr>
<tr>
<td>岡崎共同利用研究支援施設運営委員会</td>
<td>岡崎コンファレンスセンター及び宿泊施設（ロッジ）の管理運営に関し必要な事項。</td>
<td>担当責任所長教授又は准教授1国際研究協力課長</td>
<td>委員会規則</td>
<td>2023.1.23</td>
</tr>
<tr>
<td>防火防災対策委員会</td>
<td>防火防災管理に関する内部規制の制定・改廃、防火防災施設及び設備の改善強化、防火防災教育訓練の実施計画、防火思想の普及及び高揚。他</td>
<td>所長、研究所の代表（教授1）、副防火防災管理者（技術推進部長）、高圧ガス保安統括者</td>
<td>委員会規則</td>
<td>2022.6.21–7.15（メール審議）、8.19–26（メール審議）、9.20, 12.20, 2023.1.23–2.8（メール審議）</td>
</tr>
<tr>
<td>動物実験委員会</td>
<td>動物実験に関する指導及び監督。実験計画の審査。他</td>
<td>技術推進部長</td>
<td>委員会規則</td>
<td>2022.6.28, 11.29, 2023.2.22</td>
</tr>
<tr>
<td>計算科学研究センター運営委員会</td>
<td>センターの管理運営に関する重要事項を審議するため。</td>
<td>教授又は准教授1</td>
<td>委員会規則</td>
<td>2022.8.29, 2023.3.13</td>
</tr>
<tr>
<td>アイソトープ実験センター運営委員会</td>
<td>センターの管理運営に関する重要事項を審議するため。</td>
<td>教授又は准教授2技術推進部長が指名するユニット長1</td>
<td>委員会規則</td>
<td>2022.6.2, 9.22–28（メール審議）</td>
</tr>
<tr>
<td>ハラスメント防止委員会</td>
<td>ハラスメントの防止及び対策の実施について審議する。</td>
<td>所長が指名する者3</td>
<td>委員会等規則</td>
<td>2022.5.18, 7.15, 2023.3.23</td>
</tr>
<tr>
<td>アイソトープ実験センター明大寺地区実験施設放射線安全委員会</td>
<td>明大寺地区実験施設における放射線障害の防止に関し必要な事項を企画審議する。</td>
<td>研究教育職員3技術推進部長</td>
<td>委員会規則</td>
<td>2022.5.2, 7.6, 9.7, 11.2, 2023.1.4, 3.1</td>
</tr>
<tr>
<td>岡崎山手地区連絡協議会</td>
<td>岡崎山手地区における建物の円滑な管理及び環境整備等を協議する。</td>
<td>担当責任所長教授2技術推進部長</td>
<td>協議会規則</td>
<td>2022.5.2, 7.6, 9.7, 11.2, 2023.1.4, 3.1</td>
</tr>
<tr>
<td></td>
<td>岡崎 3 機関各地区的施設整備、エネルギー及び環境保全等に関する事項の立案を行い、所長会議に報告する。</td>
<td>研究総主幹教授1 教授1 計算科学研究センター長 ケース推進部長</td>
<td>委員会規則</td>
<td>2023.2.3</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>岡崎情報公開委員会</td>
<td>「独立行政法人等の保有する情報の公開に関する法律」を円滑に実施するため。</td>
<td>所長又は研究総主幹教授1 委員会規則</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>生命倫理審査委員会</td>
<td>機構におけるヒトゲノム・遺伝子解析研究を、倫理的配慮のもとに適正に推進するため。</td>
<td>教授又は准教授2 委員会規則</td>
<td>2023.1.4</td>
<td></td>
</tr>
</tbody>
</table>

設置根拠の欄 岡崎 3 機関が定めた規則、略式で記載。記載なきは規定文なし。
2-5 研究領域

理論・計算分子科学研究領域

研究目的 量子力学、統計力学などに基づき機能性分子や生体分子、表面・界面系などを含む凝縮系の構造、反応、物性、機能に関する理論・計算分子科学研究による解明

理論分子科学第一研究部門

研究目的 凝縮系における反応ダイナミクス、物性、機能の解明のための理論および方法論の開発とそれにに基づく理論・計算科学的研究

研究課題 1. 凝縮系における反応、物性、機能の解明
2. 多体効果や幾何学的効果を取り込んだ輸送現象理論の研究
3. 表面界面物性の理論研究
4. データサイエンス技術を活用した物性計算手法の開発

理論分子科学第二研究部門

研究目的 主として量子力学・統計力学に立脚した凝縮相分子系における動的現象および機能発現の理論計算研究

研究課題 1. 凝縮相化学過程の量子ダイナミクス理論
2. 量子科学技術に基づく複雑分子系の観測と制御の理論研究

計算分子科学研究部門

研究目的 機能性分子、不均一系触媒、生体分子マシン等の電子状態や構造・機能の解明のための方法論の開発とそれにに基づく理論・計算科学的研究

研究課題 1. 電子状態理論の開発と光物性科学・不均一系触媒への応用
2. 生体分子マシンにおける機能発現ダイナミクスの解明
3. 分子動力学シミュレーションにおける新しい手法の開発と生体系への応用

理論・計算分子科学研究部門（客員）

研究目的 凝縮化学系、複雑分子系、複雑流体系における機能・物性解明の理論・計算科学的研究

研究課題 1. 凝縮化学系における化学反応・化学過程の分子理論
2. 複雑分子系の溶媒和統計力学理論の構築と応用
3. 曲率誘導タンパク質による生体膜の形状制御
4. 複雑流体のダイナミクス
光分子科学研究所の概要

光分子科学第一研究部門

研究目的
主としてレーザー光源を用いた先端的分光法、顕微鏡法等を用いて、分子とその集合体の高精度・高精細な構造を明らかにすると同時に、新たなる光機能の開拓や物質特性の光制御を目指した研究を行う

研究課題
1. 極めて高い空間分解能を持つ先端的光を用いた分子集団、微粒子系における励起状態と強電場の研究、およびナノ・マイクロ物質のキャラクタリティとキラル光学効果に関する研究

光分子科学第二研究部門

研究目的
物理の量子力学的な性質を、デザインされた光電場で詳細に観察し制御するための新しい方法論とそれを支える高度な光源の開発を目指した研究を行う

研究課題
1. 高度にデザインされたレーザー場を用いて、原子・分子及びその集合体の量子ダイナミクスを精密に観測・制御するための研究、および超高速量子シミュレータ・量子コンピュータの研究開発

光分子科学第三研究部門

研究目的
新奇な分子機能の開拓と、それに関する動的プロセスの解明及び制御のための新しい方法論の開発を目指した研究を行う

研究課題
1. 真空紫外光・軟X線分光による分子あるいは低次元物質の表面・界面における物性研究

光分子科学第四研究部門（客員）

研究目的
原子や比較的簡単な分子から、それらの集合体、固体表面に吸着した原子・分子やナノ構造体、さらに生体分子を広く対象とし、高度な場数・時間・空間分解分光法、極端紫外光や特殊波長レーザー等を用いた光学測定等によりそれぞれの性質を明らかにする

研究課題
1. 電気化学反応や触媒反応の変換場における局所構造と電子状態の研究
2. 極低温リュードベリ原子を用いた超高速量子シミュレータ・量子コンピュータの開発

光源加速器開発研究部門（極端紫外光研究施設）

研究目的
シンクロトロン光源用電子加速器に関する開発研究を行う

研究課題
1. 先進的な光源加速器の設計開発研究
2. 相対論的電子ビームを用いた新しい光発生法とその利用に関する研究
電子ビーム制御研究部門（極端紫外光研究施設）
研究目的　光源の高性能化あるいは高度利用のための開発研究を行う
研究課題　1. 電子または光ビーム計測・制御技術に関する開発
 2. 放射光を用いた新規分析法の開発研究

光物性測定器開発研究部門（極端紫外光研究施設）
研究目的　固体の新奇物性に関わる電子状態を放射光赤外・テラヘルツ分光及び高分解能角度分解光電子
 分光により明らかにする
研究課題　1. 放射光を用いた固体分光用の観測システムの開発
 2. 固体物質の局在から遍歴に至る電子状態の分光研究

光化学測定器開発研究部門（極端紫外光研究施設）
研究目的　放射光軟X線を利用した新しい分子分光法の開発研究を行う
研究課題　1. 放射光を用いた光化学実験用の観測システムの開発
 2. 分子固体・液体の化学状態の分光研究

物質分子科学研究領域
研究目的　分子及びその集合体が示す新たな現象や有用な機能の発見を目指し、新規分子・物質の開発や
 それらの高次集積化と、電子・光物性、反応性、触媒能、エネルギー変換などの研究を行う。
 また、分子・分子集合体・生体分子等の物性・機能の起源を解明するため、主として分光法に
 基づいた新たな観測技術開発に努める

電子構造研究部門
研究目的　分子・物質材料の物理的・化学的新機能と機構解明
研究課題　1. 物質科学・表面科学のための新しい分光学的計測手法の開発
 2. 固体表面上の分子集合体の特異的な構造物性・化学機能・量子ダイナミクスの探求
 3. 多次元分光計測法による新奇物性開拓
 4. 有限の厚さをもつ固液界面のオペランド分子科学研究

電子物性研究部門
研究目的　分子集合体・生体分子の物性と機能

分子機能研究部門
研究目的　物質変換・エネルギー変換のためのデバイス創製、生体分子の構造と機能
研究課題　1. 新しい原理に基づく有機太陽電池とフォトンアップコンバージョンの研究
 2. 固体 NMR を用いたタンパク質の構造解析とハードウエア開発
 3. 次世代電気化学デバイスの創出に向けた機能性無機材料の探索
分子科学研究部門（客員）

研究目的
物質分子科学のコミュニティ交流を通じた新しい先端的研究分野の開拓

研究課題
1. 固体物質からの高次高調波発生
2. 有機薄膜太陽電池の高効率化に向けた新規半導体ポリマーの開発
3. パレール自由度をもつ光注入キャリアの磁場下マイクロ波共鳴によるダイナミクス研究

生命・錯体分子科学研究領域

研究目的
新規な光学的・磁気的・電気的特性や高効率な物質変換・エネルギー変換を目的とした新たな分子や分子集合体、化学反応系の設計・開発を行うとともに、多様な計測法を駆使して錯体、キラル分子、開殻電子系分子、共役系分子、生体分子およびそれらの集合体が示す高次機能や協同現象に対する分子レベルの機構解明に関する研究を行う

生体分子機能研究部門

研究目的
タンパク質や複合糖質等の生体分子が示す多彩な機能発現の分子機構を明らかにするとともに、生体分子の設計・創成を行う

研究課題
1. 新規な機能を有する金属タンパク質の構造機能相関解明
2. 複合糖質およびタンパク質の構造・ダイナミクス・相互作用に関する研究
3. 生体分子モーターのエネルギー変換機構の解明、新規設計と実証

生体分子情報研究部門

研究目的
先端計測技術により、生体分子や凝縮相分子の分子機構を解明する

研究課題
1. 溶液散乱と結晶構造解析を相補的に駆使した動的構造解析
2. 先端的分光法による凝縮相分子の機能・構造・ダイナミクスの解明

錯体触媒研究部門

研究目的
分子間の作用的相互作用に基づいた化学反応の駆動、化学反応システムの構築

研究課題
1. 水素結合・疎水性相互作用・静電的相互作用といった非共有結合性相互作用による有機分子変換触媒システム構築
2. 分子集合挙動に基づく超分子触媒、高次構造触媒の設計と創製

錯体物性研究部門

研究目的
機能性金属錯体、集積化芳香族化合物の設計と合成、新規な物性、機能の開拓

研究課題
1. 開殻電子系に基づく新規光・電子・磁気物性の開拓
2. 3次元磁気構造をもつ有機共有結合結晶の合成と機能解明
生命・錯体分子科学研究部門（客員）

研究目的
広義の錯体を対象とした触媒機能、反応性および構造の相関の解明、分子科学的手法を用いた生命機能の解明

研究課題
1. 新奇なπ共役系の設計・合成、機能性有機材料の創製
2. π電子−水素連動型有機伝導体の構造多様性探索と機能創出
3. 非天然型核酸の合成と機能・構造解析

協奏分子システム研究センター

研究目的
分子を軸足に「個」と「集団」を結ぶロジックを確立し、その原理をもとに斬新な分子システムを創成する

階層分子システム解析研究部門

研究目的
個々の分子の動態が分子間相互作用や複雑な制御ネットワークを介して多重の階層を貫き、分子システムとしての卓越した機能へと導かっていく仕組みの解明

研究課題
1. 生物時計タンパク質が24時間周期のリズムを生でる仕組みの解明
2. 先端的分光法による複雑分子系の機能・構造・ダイナミクスの解明
3. タンパク質分子構造および機能の合理デザイン
4. 生体分子系における反応および階層的構造変化の解明

機能分子システム創成研究部門

研究目的
機能性新分子の合成と、その複合化による創発的分子ナノデバイスの創成

研究課題
1. 機能性分子の多重集積化による新規機能性分子デバイス

生体分子システム研究部門

研究目的
生物が示す多彩な生命現象の分子レベルでの解明

研究課題
1. 新規な機能を有する金属タンパク質の構造と機能
2. 超高磁場 NMR を機軸とする生命分子のダイナミクスの探究
3. タンパク質分子が相互作用する際の認識、情報伝達、機能制御及びそのための実験・理論的手法の開発
4. 生体分子モーターのエネルギー変換機構の解明

メソスコピック計測研究センター

研究目的
分子が集まって機能するシステムにおいて特性発現に役割を担う。ミクロとマクロを繋ぐ階層間の情報・物質・エネルギーのやりとりの現場を、できる限りの姿で捉え、新しい分子の能力を引き出すための極限計測法の開発とその利用研究を行う

分子科学研究所の概要
物質量子計測研究部門

研究目的 精密な光観測・制御法を先鋭化し、新しい量子相を作り出して制御し、量子情報処理など新規な分子の能力を引き出す

研究課題 1. 振幅と位相をデザインしたレーザー場による超精密コヒーレント制御法の開発
 2. 固体表面における分子集合体の特異的量子ダイナミクスの探究

繊細計測研究部門

研究目的 低摂動で繊細な分子計測法等、分子のありのままの姿を非破壊的に観測する計測手法を開発し、分子物質の機能を解明

研究課題 1. ナノ領域顕微分光法による原子・分子集合体の微細光学解析
 2. ナノ構造体の光応答理論開発と多階層系の特性解析、光・電子機能物質の理論設計

広帯域相関計測解析研究部門

研究目的 多変数計測解析手法、高分解能広帯域計測法とその解析法を開発し、分子の能力とそれを司る物理過程の解析を展開

研究課題 1. 生体分子モーターのエネルギー変換機構解明のための新計測法開発
 2. 表面ナノ構造とその機能を解明するプローブ顕微鏡の開発
2-6 研究施設

極端紫外光研究施設

目的
極端紫外光研究施設は、全国共同利用施設としてUVSOR-III光源加速器（電子蓄積リング）からの中性子クロン光を全国の大学等の研究者に安定に供給して極端紫外光物性・光化学の共同利用研究を支援するとともに、極端紫外光源の高輝度化、加速器を利用した新しい光源に関する研究や新たな放射光分子科学の開拓的研究を国内外の研究者と共同して推進する。

機器センター

目的
機器センターは、新規物質開発を行う上で基盤設備となる汎用性測定装置、汎用化学分析装置、及び汎用分光計測装置を集約管理し、さらに、先端機器の開発と冷媒の供給管理を担当することにより、研究所内外の共同利用に資することを目的としている。共同利用としては協力研究を通じて利用する形態と施設利用の二種類がある。また、大学連携研究設備ネットワークの幹事機関を担い、さらには、2021年度からは文部科学省受託研究マテリアル先端リサーチインフラ事業の「マテリアルの高度循環のための技術」領域スポーク機関。2022年度からは同事業運営機構横断領域・物質・材料合成プロセス技術分野の責任機関として共同利用・民間利用拠点を務める。

装置開発室

目的
装置開発室は、多様化する材料の精密加工技術及び非機械加工を含むマイクロ・ナノ加工技術の高度化、並びに高密度集積回路の設計・製作・評価技術を確立し、所内研究あるいは共同利用研究の技術支援を行うほか、デジタルエンジニアリングの導入を進める。また、迅速な研究成果が求められる研究者からの要求に応じて装置の設計・製作を行う。

計算科学研究センター（岡崎共通研究施設）

目的
計算科学研究センターは、全国共同利用施設として、高性能分子シミュレータを国内の大学等の研究者に提供し、個々の研究室の計算機等では不可能な大規模計算等に関する共同利用研究を支援する。さらに、分子科学分野の計算に必要なライブラリの整備を進める。また、ワークショップやスクールなどを通して研究交流や人材育成の場を提供する。これらの活動に加え、スーパーコンピュータ「富岳」成果創出プログラム、データ創出・活用型マテリアル研究開発プロジェクトの2プロジェクト研究に対し、研究の場・計算機資源を提供する。
生命創成探究センター（自然科学研究機構）

目的

生命創成探究センター（Exploratory Research Center on Life and Living Systems = ExCELLS）は、自然科学研究機構の更なる機能強化を目指すために、岡崎統合バイオサイエンスセンターを中核として機構の組織を再編・統合して設置された。本センターでは、『生きているとは何か？』という人類の根源的な問いの解明に向けて、生命の仕組みを観察する新たな技術を開発するとともに、蓄積されていく多様な情報の中に隠されている意味を読み解き、さらに合成・構成的アプローチを通じて生命の基本情報の重要性を検証する活動を行っている。こうした「みる・よむ・つくる」のアプローチを基軸に、生命の始原形態や環境適応戦略を理解するために、極限環境生命の研究者とも協力しながら異分野融合型の研究を進め、生命の設計原理を探究する。この目的のもとに、国内外の大学・研究機関の連携によりコミュニティ横断型の共同利用・共同研究を推進する。
2-7 研究部門等

特別研究部門

研究目的
1. 分子科学分野において最先端の科学を切り拓く世界的研究者を「卓越教授」として招聘し、研究に専念できる環境を提供する。分子科学分野のトゥプレベル研究を支援する

2. 分子科学分野において独創的な研究を行っている大学教員をクロスアポイントメントで招聘し、分子研の先端設備を使った研究に集中的に取り組む場を提供する

社会連携研究部門

研究目的
主に企業などからの資金によって運営するオープンイノベーション拠点とし産官学の共同研究を実施する
2-8 構成員

2-8-1 構成員

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>渡辺 芳人</td>
<td>所長</td>
</tr>
<tr>
<td>岡本 裕己</td>
<td>研究総主幹 (併)</td>
</tr>
<tr>
<td>大星 賢</td>
<td>特別顧問、名誉教授</td>
</tr>
<tr>
<td>中村 宏樹</td>
<td>特別顧問、名誉教授</td>
</tr>
<tr>
<td>岩田 末廣</td>
<td>名誉教授</td>
</tr>
<tr>
<td>岩村 秀</td>
<td>名誉教授</td>
</tr>
<tr>
<td>宇賀羅 恒雄</td>
<td>名誉教授</td>
</tr>
<tr>
<td>岡崎 進</td>
<td>名誉教授</td>
</tr>
<tr>
<td>北川 義三</td>
<td>名誉教授</td>
</tr>
<tr>
<td>末田 邦博</td>
<td>名誉教授</td>
</tr>
<tr>
<td>小杉 信嘉</td>
<td>名誉教授</td>
</tr>
<tr>
<td>小林 俊男</td>
<td>名誉教授</td>
</tr>
<tr>
<td>須藤 修二</td>
<td>名誉教授</td>
</tr>
<tr>
<td>田中 晃二</td>
<td>名誉教授</td>
</tr>
<tr>
<td>永瀬 茂</td>
<td>名誉教授</td>
</tr>
<tr>
<td>木村 信之</td>
<td>名誉教授</td>
</tr>
<tr>
<td>平田 丈男</td>
<td>名誉教授</td>
</tr>
<tr>
<td>播田 俊治</td>
<td>名誉教授</td>
</tr>
<tr>
<td>酒井 久郎</td>
<td>名誉教授</td>
</tr>
<tr>
<td>吉原 紋</td>
<td>名誉教授</td>
</tr>
<tr>
<td>渡辺 芳人</td>
<td>名誉教授</td>
</tr>
<tr>
<td>理論分子科学第二研究部門</td>
<td></td>
</tr>
<tr>
<td>石崎 道仁</td>
<td>教授</td>
</tr>
<tr>
<td>三輪 邦之</td>
<td>助教</td>
</tr>
<tr>
<td>坂本 想一</td>
<td>特任研究員</td>
</tr>
</tbody>
</table>

計算分子科学研究部門

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>江原 正博</td>
<td>教授 (兼) (計算科学研究センター)</td>
</tr>
<tr>
<td>荒村 久士</td>
<td>教授 (兼) (計算科学研究センター)</td>
</tr>
<tr>
<td>岡崎 鮭一</td>
<td>教授 (兼) (生命創成探索センター)</td>
</tr>
<tr>
<td>伊藤 晃</td>
<td>助教</td>
</tr>
<tr>
<td>大貫 华</td>
<td>助教</td>
</tr>
<tr>
<td>福原 大輝</td>
<td>大学院生</td>
</tr>
<tr>
<td>大多和 克紀</td>
<td>大学院生</td>
</tr>
<tr>
<td>杉本 緑</td>
<td>事務支援員</td>
</tr>
</tbody>
</table>

理論・計算分子科学研究部門 (客員研究部門)

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>佐藤 啓文</td>
<td>客員教授 (京大院工)</td>
</tr>
<tr>
<td>吉田 紐生</td>
<td>客員教授 (名大院情報)</td>
</tr>
<tr>
<td>野口 博司</td>
<td>客員准教授 (東大物性研)</td>
</tr>
</tbody>
</table>

光分子科学研究領域

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>研究主任 (併)</td>
<td>大森 賢治</td>
</tr>
</tbody>
</table>
| 光分子科学第一研究部門
| 岡本 裕己 | 教授 (併) |

光分子科学第二研究部門

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>大森 賢治</td>
<td>教授</td>
</tr>
<tr>
<td>酒井 靖</td>
<td>助教</td>
</tr>
<tr>
<td>DE LÉSÉLEUC, Sylvain</td>
<td>助教</td>
</tr>
<tr>
<td>富田 隆文</td>
<td>特任助教 (分子科学研究所特別研究員)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHARTI, Vineet</td>
<td>特任研究員</td>
</tr>
<tr>
<td>CHAUHAN, Vikas Singh</td>
<td>特任研究員</td>
</tr>
<tr>
<td>周 雲</td>
<td>講師</td>
</tr>
<tr>
<td>TIRUMALASETTY PANDURANGA, Mahesh</td>
<td>大学院生</td>
</tr>
<tr>
<td>VILLELA ESCALANTE, Rene Alejandro</td>
<td>大学院生</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>構成員</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>川本 美奈子</td>
<td>技術支援員</td>
</tr>
</tbody>
</table>
分子科学研究所の概要

光分子科学第三研究部門
解良 聡 教授
長坂 将成 助教
福谷 圭祐 助教
PALASSERY ITHIKKAL, Jaseca 大学院生
西野 史 大学院生
瀬間 亮太 特別共同利用研究員
山内 早希 特別共同利用研究員

光分子科学第四研究部門（客員研究部門）
間瀬 一彦 客員教授（高エネ研物構）
福原 武 客員准教授（理研量子コンピュータ研）
中山 泰生 客員准教授（東大理工）

神谷 美穂* 事務支援員
石川 裕子* 事務支援員

物質分子科学研究領域
研究主幹（併） 横山 利彦 教授
電子構造研究部門
横山 利彦 教授（クロスアポイントメント：阪大院生命機能）
木村 真一 教授（特別研究部門）
大西洋 教授（クロスアポイントメント：神戸大院理）（特別研究部門）
杉本 敏樹 准教授
小坂谷 賢典 助教
山本 航平 助教
関井 敦教 助教
斎藤 晃 学振特別研究員
高橋 颯太 学振特別研究員
市井 智卓 特別訪問研究員
細岡 和幸 特任専門員
佐藤 宏祐 大学院生
林 仲秋 大学院生
野口 直樹 大学院生
望月 達人 大学院生
吉澤 龍 大学院生
金 成龍 大学院生
小林 明斗 特別共同利用研究員

電子物性研究部門
山本 浩史 教授（併）

分子機能研究部門
平本 昌宏 教授
西村 雄之 准教授

小林 玄器 准教授
伊澤 誠一郎 助教
竹入 史隆 助教
足立 和宏 助教
岡本 啓 大学院生
内村 祐 大学院生
泉 善貴 大学院生
楠本 恵子 大学院生
久保田 亜紀子 技術支援員
今井 弓子 技術支援員
小倉 康子 事務支援員

尾坂 惟 客員教授（広大院先進理工）
田中 耕一郎 客員教授（京大院理）
秋元 郁子 客員准教授（和歌山大学システム工）

横田 光代* 事務支援員
石川あずさ* 事務支援員
志村 真希 事務支援員
神谷 美穂 事務支援員

生命・錯体分子科学研究領域
研究主幹（併） 飯野 亮太 教授
生体分子機能研究部門
青野 重利 教授（兼）（生命創成探究センター）
加藤 晃一 教授（兼）（生命創成探究センター）
飯野 亮太 教授
矢木 真穂 准教授（兼）（名市大薬）
村木 則文 教授（兼）（生命創成探究センター）

谷中 悠子 助教
大友 章裕 助教

YU, Yan 学振外国人招へい研究者
原島 崇徳 特任研究員（IMSフェロー）
KEYA, Jakia Jannat 特任研究員
松本 浩輔 特任研究員
礦野 裕貴子 特任専門員
関口 太一朗 大学院生
齋藤 泰澤 特別共同利用研究員
梅澤 美美子 特別共同利用研究員
西村 直七 特別共同利用研究員
沈 佳娜 特別共同利用研究員
山本 萬 特別共同利用研究員
大国 泰子 技術支援員
今 弥生 技術支援員

26 分子科学研究所の概要
分子科学研究所の概要

生体分子情報研究部門

秋山 修志 教授（併）
倉持 光 准教授（併）
向山 厚 助教（併）
古池 美彦 助教（併）

錯体触媒研究部門

魚住 さくえ 教授
横山 信恵 准教授
奥村 慎太郎 助教
大塚 尚哉 助教
田澤 文 研究員

Zhang, Kai Li

生理分子情報研究部門

高橋 輝気 准教授
服部 修佑 助教

協調分子システム研究センター

センター長（併） 秋山 修志

協調分子システム解析研究部門

秋山 修志 教授
斎藤 真司 教授（併）
古賀 信康 准教授（兼）（生命創成探究センター）
倉持 光 准教授
小林 顕助 助教
向山 厚 助教
古池 美彦 助教
小杉 黄洋 助教
末田 勇祐 助教
南 僚太朗 特別協力研究員
SIMON, Damien Stephane 大学院生

機能分子システム創成研究部門

山本 浩史 教授
AVARVARI, Narcis 外国人研究職員
佐藤 拓朗 助教
友田 美枝 大学院生
錦井 康次 大学院生
相澤 孝紀 大学院生
中島 良太 大学院生
MALATONG, Ruttapol 大学院生

URBAN, Adrian Joe 大学院生

村田 了介 技術支援員

生命・錯体分子科学研究所（客員研究部門）

深澤 愛子 客員教授（京大高等研究院）

上田 顕 客員准教授（熊本大学先端科学）

神谷 由紀子 客員准教授（名大院工）

佐々木 時代 事務支援員
福富 幸代 事務支援員
谷分 奈由子 事務支援員
中根 香織* 事務支援員
川口 律子* 事務支援員

協調分子システム研究センター

センター長（併） 秋山 修志

物質分子計測研究部門

大森 賢治 教授（併）
杉本 敏樹 准教授（併）
南谷 英美 准教授（併）
<table>
<thead>
<tr>
<th>部門</th>
<th>教授/准教授/助教</th>
<th>特任助教/特別研究員</th>
<th>領域</th>
</tr>
</thead>
<tbody>
<tr>
<td>繊細計測研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡本 裕已</td>
<td>教授</td>
<td></td>
<td></td>
</tr>
<tr>
<td>江原 正博</td>
<td>教授（併）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吉澤 大智</td>
<td>助教</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHN, Hyo-Yong</td>
<td>特任助教（併）</td>
<td></td>
<td>新分野創成センター</td>
</tr>
<tr>
<td>山西 翔介</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>成島 哲也</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広帯域相関計測解析研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>飯野 亮太</td>
<td>教授（併）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>熊谷 崇</td>
<td>准教授</td>
<td></td>
<td></td>
</tr>
<tr>
<td>西田 純</td>
<td>助教</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIU, Shuyi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>野村 惠美子</td>
<td>事務支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>伊藤 敦子</td>
<td>事務支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>特別研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>藤田 誠</td>
<td>卓越教授（東大院工学系）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>木村 真一</td>
<td>教授（クロアボイメント；阪大院生機機能）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大西 洋</td>
<td>教授（クロアボイメント；神戸大院理）（電子構造研究部門）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高谷 光</td>
<td>教授（兼）（帝京科学大学生命環境）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三橋 隆章</td>
<td>特任助教（分子科学研究所特別研究員）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>陳 佳卓</td>
<td>特任専門員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>増田 透子</td>
<td>事務支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>神谷 美穂</td>
<td>事務支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>社会連携研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平等 拓範</td>
<td>特任教授（クロアボイメント；理研Spring-8）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>竹家 トーマス啓</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAUSSAS, Arvydas</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAHIA, Vincent</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM, Hwanhong</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>鈴木 昌世</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>川瀬 晃道</td>
<td>特別訪問研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>辻 明宏</td>
<td>特別訪問研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>佐藤 慎一</td>
<td>特別訪問研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>極端紫外光研究施設</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光源加速器開発研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加藤 政博</td>
<td>特任教授（クロアボイメント；広大HiSOR）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>藤本 将輝</td>
<td>助教（兼）（名大シンクロトロン光研究センター）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電子ビーム制御研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平 義隆</td>
<td>准教授</td>
<td></td>
<td></td>
</tr>
<tr>
<td>杉田 健人</td>
<td>助教</td>
<td></td>
<td></td>
</tr>
<tr>
<td>松田 博之</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALEHI DERAKHTANJANI, Elham</td>
<td>特任研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>後藤 啓太</td>
<td>特別共同利用研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保科 拓海</td>
<td>特別共同利用研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>物性測定器開発研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>松井 文彦</td>
<td>教授</td>
<td></td>
<td></td>
</tr>
<tr>
<td>田中 清尚</td>
<td>准教授</td>
<td></td>
<td></td>
</tr>
<tr>
<td>杉本 卓史</td>
<td>特別共同利用研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保科 拓海</td>
<td>特別共同利用研究員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>光化学測定器開発研究部門</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岩山 洋士</td>
<td>助教</td>
<td></td>
<td></td>
</tr>
<tr>
<td>柿本 奈伸</td>
<td>特任専門員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水口 あき</td>
<td>技術支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>塚本 利夫</td>
<td>技術支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>石原 麻由美</td>
<td>特別支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>加茂 恭子</td>
<td>特別支援員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術推進部</td>
<td>部長</td>
<td>繁政</td>
<td>英治</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>原田 美幸</td>
<td>技師</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内山 功一</td>
<td>技師</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>光技術ユニット</th>
<th>ユニット長</th>
<th>林 憲志</th>
</tr>
</thead>
<tbody>
<tr>
<td>中村 永研</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>林 憲志</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>牧田 誠二</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>関野 奏彬</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>矢野 隆行</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>山崎 潤一郎</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>酒井 雅弘</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>近藤 直範</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>手島 史郎</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>湯澤 勇人</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>太田 紹志</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>水川 哲德</td>
<td>技術支援員</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>装置開発ユニット</th>
<th>ユニット長</th>
<th>近藤 聖彦</th>
</tr>
</thead>
<tbody>
<tr>
<td>近藤 聖彦</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>豊田 朋範</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>松尾 純一</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>杉本 和典</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>菊地 拓郎</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>高田 纪子</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>木村 幸代</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>水谷 伸雄</td>
<td>技術支援員</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>計算情報ユニット</th>
<th>ユニット長</th>
<th>岩橋 建樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>岩橋 建樹</td>
<td>主任技師</td>
<td></td>
</tr>
<tr>
<td>水谷 文保</td>
<td>技師</td>
<td></td>
</tr>
<tr>
<td>渡部 基司</td>
<td>主任技術員</td>
<td></td>
</tr>
<tr>
<td>宇部 茂樹</td>
<td>主任技術員</td>
<td></td>
</tr>
<tr>
<td>澤 昌孝</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>長谷 資重</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>木下 敦正</td>
<td>技術員</td>
<td></td>
</tr>
<tr>
<td>矢崎 稔子</td>
<td>技術支援員</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機器ユニット</th>
<th>ユニット長</th>
<th>繁政</th>
<th>英治</th>
</tr>
</thead>
<tbody>
<tr>
<td>高山 敦史</td>
<td>技師</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高橋 基靖</td>
<td>技師</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上田 正</td>
<td>技師</td>
<td></td>
<td></td>
</tr>
<tr>
<td>浅田 瑠枝</td>
<td>技術員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>賀川 章大</td>
<td>技術員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡野 芳則</td>
<td>技術員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮島 瑞樹</td>
<td>技術員</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

整理日付は 2022 年 5 月 1 日現在。
職名の後に（ ）書きある者は客員教員等で、本務所属を記載している。
派遣職員を含む。
※事務支援員で複数の研究領域・研究施設を担当しているもの。
分子科学研究所の概要

2-8-2 現 員

<table>
<thead>
<tr>
<th>職名</th>
<th>区 分</th>
<th>研究力強化戦略室・安全衛生管理室等</th>
<th>研究領域*1</th>
<th>研究部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>教授</td>
<td></td>
<td>1</td>
<td>2(2,0)</td>
<td>3(1,0)</td>
</tr>
<tr>
<td>准教授</td>
<td></td>
<td>0</td>
<td>1(1,0)</td>
<td>1(2,0)</td>
</tr>
<tr>
<td>主任研究員</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>助 教</td>
<td></td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>特任助教</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>研究員</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>小計</td>
<td></td>
<td>2</td>
<td>11(3,0)</td>
<td>13(3,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>職名</th>
<th>区 分</th>
<th>研究支援</th>
<th>理論・計算分子科学</th>
<th>光分子科学</th>
<th>物質分子科学</th>
<th>生命・錯体分子科学</th>
<th>特別</th>
<th>社会連携</th>
</tr>
</thead>
<tbody>
<tr>
<td>技術職員</td>
<td></td>
<td>3</td>
<td>0*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特任専門員</td>
<td></td>
<td>8</td>
<td>7*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>再雇用職員</td>
<td></td>
<td>0</td>
<td>1*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術支援員</td>
<td></td>
<td>1</td>
<td>11*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事務支援員</td>
<td></td>
<td>7</td>
<td>14*3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td></td>
<td>19</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>職名</th>
<th>区 分</th>
<th>研究支援</th>
<th>研究施設</th>
<th>転職員</th>
<th>再雇用職員</th>
<th>部門研究センター</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>教授</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>20 (0/0)</td>
</tr>
<tr>
<td>准教授</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>16 (2/0)</td>
</tr>
<tr>
<td>主任研究員</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (0/0)</td>
</tr>
<tr>
<td>助 教</td>
<td></td>
<td>2(0,1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>31 (1/2)</td>
</tr>
<tr>
<td>特任助教</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (0/0)</td>
</tr>
<tr>
<td>研究員</td>
<td></td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>31 (8/10)</td>
</tr>
<tr>
<td>小計</td>
<td></td>
<td>9(0,1)</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>100 (11/12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>職名</th>
<th>区 分</th>
<th>研究支援</th>
<th>研究支援</th>
<th>理論・計算分子科学</th>
<th>光分子科学</th>
<th>物質分子科学</th>
<th>生命・錯体分子科学</th>
<th>特別</th>
<th>社会連携</th>
</tr>
</thead>
<tbody>
<tr>
<td>技術職員</td>
<td></td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>特任専門員</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>再雇用職員</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>技術支援員</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>事務支援員</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td></td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 合計 | | 26 | 22 | 11 | 19 | 8 | 207 |

所内職員は1の実数として表に現す、併任は数えない。女性（A）と外国人（B）研究者人数は、右端合計列に（A/B）で内数を記する。機構外本務の客員数（C）と兼務者数（D）は、[C,D]で外数で数える。派遣職員は含まない。

*1 メゾスコピック計測研究センターと協奏分子システム研究センターの職員は、PIが併任する研究領域に数える。
*2 助手を含む。
*3 研究領域・研究部門の事務支援員は、複数グループの支援を担当するため研究領域・研究部門全体で数える。技術職員、特任専門員、技術支援員、一部の事務支援員は上記の限りではないが、これに倣って記載する。
*4 生命創成探究センターの分子研併任PIグループを数える。ただし本務を分子研とする助教は研究領域に数える。

分子科学研究所の概要 31
2-8-3 人事異動状況

(1) 分子科学研究所の人事政策

分子科学研究所では創立以来、研究教育職員（教授、准教授、助教および主任研究員）の採用に関しては厳密に公募の方針を守り、しかもその審議は全て所内5名、所外3名の委員で構成される運営会議人事選考部会に委ねられている。さらに、厳密な選考を経て採用された准教授、助教は分子科学コミュニティと分子科学研究所教員の流動性を保つため原則として内部昇任が禁止されている（例外は創立以来2件のみ）。教授、准教授の研究グループの研究活動に関しては、所長および運営顧問、研究顧問によるヒアリング、また研究領域あるいは施設ごとに国内委員と外国委員による点検・評価を受けている。さらに、教授、准教授の個人評価は confidential report の形で所長に報告されるなど、所長は教授、准教授の研究グループの活性化と流動性に心がけている。なお、助教が6年を超えて勤務を継続する場合は、毎年、本人の属する研究領域の主幹あるいは施設長が主幹・施設長会議においてそれまでの研究活動と転出の努力の状況を報告し、同会議で承認された後、教授会議では本人の属するグループの教授または准教授によって同様の手続きを行い、研究期間の1年延長の承認を得るという手続きをとっている。2011年度より、特任制度年俸制職員の特任准教授である若手独立フェロー制度を実施している。特任制度年俸制職員の定めに従って任期は5年である。対象は、博士号取得2年以内（見込み含む）、あるいは博士号取得後、海外で研究中の人は帰国後1年以内（滞在中含む）であったが、2017年度に見直し方が行われ、国内外を問わず博士号取得3年以内を対象とすることとなった。2019年度より、新規採用の研究教育職員は原則、年俸制に移行することになった。特任制度の年俸制ではなく、任期は定めず、毎年度末に業績評価が実施される。2019年度より、新たに主任研究員制度の運用を開始したほか、特別研究部門を設けて、世界トップレベルの研究者を招へいすることとした。2019年より、同部門に大学教員をクロスアポイントメントで招聘する制度の運用を開始した。

(2) 創立以来の人事異動状況（2022年5月1日現在）

① 本務教員と研究員の頭脳循環（分子研のみ 岡崎共通研究施設は含まず 休職・休業含む）

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第3期</th>
<th>第4期</th>
<th>現員数*（2022年5月1日現在）</th>
</tr>
</thead>
<tbody>
<tr>
<td>教授</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>准教授</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>主任研究員</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>助教</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>特任助教</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>研究員</td>
<td>14</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>計</td>
<td>20</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

* (A/B) は、女性(A)と外国人(B)研究者人数で内数
転出人数

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第3期</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td>教授</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>准教授</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>主任研究員</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>助教</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>特任助教</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>研究員</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>計</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>

客員教員等

<table>
<thead>
<tr>
<th>区分</th>
<th>職名</th>
<th>創立～2022年度</th>
<th>現員数*2 2022年5月1日現在</th>
</tr>
</thead>
<tbody>
<tr>
<td>客員研究部門（国内）</td>
<td>教授</td>
<td>169</td>
<td>7(1)</td>
</tr>
<tr>
<td></td>
<td>准教授</td>
<td>181</td>
<td>6(2)</td>
</tr>
<tr>
<td>国外*1</td>
<td>教授</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>准教授</td>
<td>51</td>
<td>0</td>
</tr>
</tbody>
</table>

*1 外国人客員研究部門および外国人客員人数。外国人客員研究部門は2006年度をもって廃止。2007年より外国人研究職員。
*2 () は女性の人数で内数。
2-9 財政

(単位：千円)

<table>
<thead>
<tr>
<th>項目</th>
<th>年度</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>運営費交付金</td>
<td></td>
<td>3,037,793</td>
<td>2,286,166</td>
<td>2,267,343</td>
<td>2,171,164</td>
<td>2,289,408</td>
<td>2,503,417</td>
</tr>
<tr>
<td>施設整備費補助金</td>
<td></td>
<td>80,000</td>
<td>0</td>
<td>602,790</td>
<td>269,940</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>補助金等収入 小計</td>
<td></td>
<td>73,080</td>
<td>67,920</td>
<td>60,973</td>
<td>93,974</td>
<td>37,177</td>
<td>29,184</td>
</tr>
<tr>
<td>研究大学強化促進費補助金</td>
<td></td>
<td>46,800</td>
<td>45,800</td>
<td>38,300</td>
<td>36,833</td>
<td>33,366</td>
<td>27,283</td>
</tr>
<tr>
<td>科学技術人材育成費補助金</td>
<td></td>
<td>26,280</td>
<td>22,120</td>
<td>22,673</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>先端研究開発費補助金</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49,973</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>中小企業経営支援等対策費補助金</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,168</td>
<td>3,811</td>
<td>1,901</td>
</tr>
<tr>
<td>国立大学財務・経営センター施設費交付金</td>
<td></td>
<td>29,470</td>
<td>28,753</td>
<td>25,055</td>
<td>25,626</td>
<td>43,046</td>
<td>53,355</td>
</tr>
<tr>
<td>自己収入</td>
<td></td>
<td>29,470</td>
<td>28,753</td>
<td>25,055</td>
<td>25,626</td>
<td>43,046</td>
<td>53,355</td>
</tr>
<tr>
<td>産学連携等研究収入及び寄附金収入等 小計</td>
<td></td>
<td>1,408,087</td>
<td>1,733,856</td>
<td>1,125,284</td>
<td>749,476</td>
<td>1,042,648</td>
<td>1,068,661</td>
</tr>
<tr>
<td>産学連携等研究収入</td>
<td></td>
<td>1,306,087</td>
<td>1,613,501</td>
<td>1,001,996</td>
<td>642,247</td>
<td>938,897</td>
<td>970,376</td>
</tr>
<tr>
<td>寄附金</td>
<td></td>
<td>1,040,067</td>
<td>44,433</td>
<td>51,976</td>
<td>49,487</td>
<td>47,331</td>
<td>32,230</td>
</tr>
<tr>
<td>大学院教育経費収入</td>
<td></td>
<td>71,560</td>
<td>76,022</td>
<td>71,312</td>
<td>57,742</td>
<td>56,420</td>
<td>66,055</td>
</tr>
<tr>
<td>目的積立金取崩額</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28,740</td>
</tr>
<tr>
<td>科学研究費助成事業（直接経費）</td>
<td></td>
<td>389,661</td>
<td>379,364</td>
<td>349,420</td>
<td>371,260</td>
<td>391,720</td>
<td>349,661</td>
</tr>
<tr>
<td>収入合計</td>
<td></td>
<td>5,018,091</td>
<td>4,496,059</td>
<td>4,430,865</td>
<td>3,681,440</td>
<td>3,803,999</td>
<td>4,033,018</td>
</tr>
<tr>
<td>人件費</td>
<td></td>
<td>981,592</td>
<td>946,412</td>
<td>907,535</td>
<td>965,954</td>
<td>1,010,976</td>
<td>1,010,782</td>
</tr>
<tr>
<td>研究経費</td>
<td></td>
<td>550,286</td>
<td>532,908</td>
<td>531,766</td>
<td>607,004</td>
<td>561,273</td>
<td>413,771</td>
</tr>
<tr>
<td>共同利用経費</td>
<td></td>
<td>653,001</td>
<td>636,962</td>
<td>849,783</td>
<td>505,535</td>
<td>727,023</td>
<td>590,703</td>
</tr>
<tr>
<td>教育研究支援経費</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>一般管理費</td>
<td></td>
<td>2,019</td>
<td>2,335</td>
<td>3,313</td>
<td>3,776</td>
<td>4,442</td>
<td>5,270</td>
</tr>
<tr>
<td>施設整備費</td>
<td></td>
<td>80,000</td>
<td>602,790</td>
<td>269,940</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>補助金等 小計</td>
<td></td>
<td>73,080</td>
<td>67,920</td>
<td>60,973</td>
<td>93,974</td>
<td>37,177</td>
<td>29,184</td>
</tr>
<tr>
<td>研究大学強化促進費補助金</td>
<td></td>
<td>46,800</td>
<td>45,800</td>
<td>38,300</td>
<td>36,833</td>
<td>33,366</td>
<td>27,283</td>
</tr>
<tr>
<td>科学技術人材育成費補助金</td>
<td></td>
<td>26,280</td>
<td>22,120</td>
<td>22,673</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>先端研究開発費補助金</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49,973</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>中小企業経営支援等対策費補助金</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,168</td>
<td>3,811</td>
<td>1,901</td>
</tr>
<tr>
<td>処理充実等研究経費及び寄附金事業費等 小計</td>
<td></td>
<td>1,243,105</td>
<td>1,692,623</td>
<td>1,087,798</td>
<td>722,209</td>
<td>1,019,172</td>
<td>930,818</td>
</tr>
<tr>
<td>産学連携等研究費</td>
<td></td>
<td>1,161,348</td>
<td>1,595,398</td>
<td>989,107</td>
<td>633,151</td>
<td>927,079</td>
<td>843,306</td>
</tr>
<tr>
<td>寄附金事業費</td>
<td></td>
<td>10,197</td>
<td>21,203</td>
<td>27,275</td>
<td>31,316</td>
<td>35,673</td>
<td>21,457</td>
</tr>
<tr>
<td>大学院教育経費</td>
<td></td>
<td>71,560</td>
<td>76,022</td>
<td>71,312</td>
<td>57,742</td>
<td>56,420</td>
<td>66,055</td>
</tr>
<tr>
<td>科学研究費助成事業（直接経費）</td>
<td></td>
<td>374,167</td>
<td>367,091</td>
<td>336,345</td>
<td>331,697</td>
<td>439,533</td>
<td>338,817</td>
</tr>
<tr>
<td>支出合計</td>
<td></td>
<td>3,958,150</td>
<td>4,246,251</td>
<td>4,380,303</td>
<td>3,500,089</td>
<td>3,799,596</td>
<td>3,319,345</td>
</tr>
<tr>
<td>区分</td>
<td>年度</td>
<td>寄付金</td>
<td>件数（件）</td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
<td>2020</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>分子科学研究所</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>金額（千円）</td>
<td>25,021</td>
<td>25,483</td>
<td>37,505</td>
<td>37,224</td>
<td>31,394</td>
</tr>
<tr>
<td>生命創成探究センター・岡崎共通研究施設（分子研分）</td>
<td>件数（件）</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>2,000</td>
<td>4,500</td>
<td>3,100</td>
<td>2,000</td>
<td>1,500</td>
<td>610</td>
</tr>
<tr>
<td>文部科学省科学研究費助成事業*</td>
<td>件数（件）</td>
<td>83</td>
<td>97</td>
<td>81</td>
<td>76</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>389,662</td>
<td>492,319</td>
<td>453,118</td>
<td>479,779</td>
<td>508,495</td>
<td>453,450</td>
</tr>
<tr>
<td>生命創成探究センター・岡崎共通研究施設（分子研分）</td>
<td>件数（件）</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>78,700</td>
<td>50,439</td>
<td>104,130</td>
<td>80,331</td>
<td>73,515</td>
<td>94,026</td>
</tr>
<tr>
<td>共同研究*</td>
<td>件数（件）</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>58,961</td>
<td>36,374</td>
<td>35,396</td>
<td>34,337</td>
<td>40,380</td>
<td>21,761</td>
</tr>
<tr>
<td>生命創成探究センター・岡崎共通研究施設（分子研分）</td>
<td>件数（件）</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>4,644</td>
<td>3,457</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>受託研究*</td>
<td>件数（件）</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>21</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>1,205,634</td>
<td>1,523,539</td>
<td>914,065</td>
<td>563,906</td>
<td>859,124</td>
<td>910,486</td>
</tr>
<tr>
<td>生命創成探究センター・岡崎共通研究施設（分子研分）</td>
<td>件数（件）</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>金額（千円）</td>
<td>23,260</td>
<td>28,660</td>
<td>16,250</td>
<td>14,560</td>
<td>17,810</td>
<td>56,861</td>
</tr>
<tr>
<td>合計金額（千円）</td>
<td>1,679,278</td>
<td>2,077,715</td>
<td>1,440,084</td>
<td>1,115,246</td>
<td>1,439,393</td>
<td>1,403,900</td>
<td></td>
</tr>
</tbody>
</table>

*間接経費、産学官連携推進経費を含む。
科学研究費助成事業

代表者課題

<table>
<thead>
<tr>
<th>研究種目</th>
<th>分子科学研究所</th>
<th>生命創成探究センター・岡崎共通研究施設</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>件数</td>
<td>交付金額</td>
<td>件数</td>
</tr>
<tr>
<td>特別推進研究</td>
<td>1</td>
<td>117,000</td>
<td>0</td>
</tr>
<tr>
<td>新学術領域研究</td>
<td>2</td>
<td>26,910</td>
<td>1</td>
</tr>
<tr>
<td>挑戦的研究（開拓）</td>
<td>1</td>
<td>5,330</td>
<td>0</td>
</tr>
<tr>
<td>挑戦的研究（萌芽）</td>
<td>6</td>
<td>14,950</td>
<td>1</td>
</tr>
<tr>
<td>若手研究</td>
<td>14</td>
<td>29,250</td>
<td>2</td>
</tr>
<tr>
<td>学術変革領域研究A</td>
<td>5</td>
<td>54,080</td>
<td>1</td>
</tr>
<tr>
<td>学術変革領域研究B</td>
<td>1</td>
<td>6,760</td>
<td>0</td>
</tr>
<tr>
<td>基盤研究（S）</td>
<td>1</td>
<td>23,140</td>
<td>0</td>
</tr>
<tr>
<td>基盤研究（A）</td>
<td>5</td>
<td>65,260</td>
<td>0</td>
</tr>
<tr>
<td>基盤研究（B）</td>
<td>12</td>
<td>53,430</td>
<td>3</td>
</tr>
<tr>
<td>基盤研究（C）</td>
<td>7</td>
<td>10,790</td>
<td>3</td>
</tr>
<tr>
<td>研究活動スタート支援</td>
<td>3</td>
<td>3,817</td>
<td>1</td>
</tr>
<tr>
<td>国際共同研究（拠点発展）</td>
<td>1</td>
<td>1,820</td>
<td>0</td>
</tr>
<tr>
<td>国際共同研究強化（B）</td>
<td>1</td>
<td>5,330</td>
<td>0</td>
</tr>
<tr>
<td>特別研究員奨励費</td>
<td>4</td>
<td>5,070</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>64</td>
<td>422,937</td>
<td>14</td>
</tr>
</tbody>
</table>

間接経費を含む。交付金額は分担者への配分金額を含む。

分担者課題

<table>
<thead>
<tr>
<th>研究種目</th>
<th>分子科学研究所</th>
<th>生命創成探究センター・岡崎共通研究施設</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>件数</td>
<td>交付金額</td>
<td>件数</td>
</tr>
<tr>
<td>特別推進研究</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>新学術領域研究</td>
<td>2</td>
<td>10,173</td>
<td>2</td>
</tr>
<tr>
<td>挑戦的研究（開拓）</td>
<td>2</td>
<td>1,690</td>
<td>0</td>
</tr>
<tr>
<td>学術変革領域研究A</td>
<td>2</td>
<td>2,080</td>
<td>2</td>
</tr>
<tr>
<td>学術変革領域研究B</td>
<td>1</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>基盤研究（S）</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>基盤研究（A）</td>
<td>3</td>
<td>6,890</td>
<td>1</td>
</tr>
<tr>
<td>基盤研究（B）</td>
<td>7</td>
<td>5,460</td>
<td>1</td>
</tr>
<tr>
<td>基盤研究（C）</td>
<td>2</td>
<td>260</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>19</td>
<td>26,813</td>
<td>10</td>
</tr>
</tbody>
</table>

間接経費を含む。
<table>
<thead>
<tr>
<th>事業体</th>
<th>事業名</th>
<th>実施課題数 (代表者／分担者)</th>
<th>交付金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>文部科学省</td>
<td>科学技術試験研究委託事業 光・量子飛躍フラッグシッププログラム Q-LEAP</td>
<td>0 /4</td>
<td>150,756</td>
</tr>
<tr>
<td></td>
<td>NMR プラットフォーム</td>
<td>0 /1</td>
<td>2,041</td>
</tr>
<tr>
<td>環境省</td>
<td>令和 4 年度地域資源循環を通じた脱炭素化に向けた革新的触媒技術の開発・実証事業</td>
<td>0 /1</td>
<td>23,460</td>
</tr>
<tr>
<td>防衛装備庁</td>
<td>令和 2 年度安全保障技術研究推進制度における委託事業</td>
<td>0 /1</td>
<td>175,284</td>
</tr>
<tr>
<td>国立研究開発法人</td>
<td>科学技術振興機構</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ムーンショット型研究開発事業</td>
<td>1 /2</td>
<td>180,375</td>
</tr>
<tr>
<td>国立研究開発法人</td>
<td>戦略的創造研究推進事業 さきがけ</td>
<td>6 /0</td>
<td>43,759</td>
</tr>
<tr>
<td>日本医療研究開発機構</td>
<td>CREST</td>
<td>0 /4</td>
<td>44,460</td>
</tr>
<tr>
<td></td>
<td>未来社会創造事業 大規模プロジェクト型</td>
<td>0 /1</td>
<td>89,825</td>
</tr>
<tr>
<td></td>
<td>創発的創造研究推進事業</td>
<td>4 /0</td>
<td>55,349</td>
</tr>
<tr>
<td>国立研究開発法人</td>
<td>日本原子力研究開発機構</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>次世代治療・診断実現のための創薬基盤技術開発事業</td>
<td>0 /2</td>
<td>290,860</td>
</tr>
<tr>
<td></td>
<td>英知を結集した原子力科学技術・人材育成推進事業</td>
<td>0 /1</td>
<td>6,513</td>
</tr>
<tr>
<td></td>
<td>原廃炉・汚染水対策事業費補助金（燃料デブリの分析精度の向上、熱挙動の推定及び簡易分析のための技術開発）</td>
<td>1 /0</td>
<td>2,003</td>
</tr>
<tr>
<td>国立研究開発法人</td>
<td>物質・材料科学技術研究機構</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本学术振興会</td>
<td>科学技術試験研究委託事業 マテリアル先端リサーチイノベーションセンター（スポーツ機関）</td>
<td>0 /2</td>
<td>156,603</td>
</tr>
<tr>
<td></td>
<td>学術研究開発研究</td>
<td>1 /0</td>
<td>1,560</td>
</tr>
<tr>
<td></td>
<td>株式会社コンボン研究所</td>
<td>1 /0</td>
<td>5,500</td>
</tr>
</tbody>
</table>

計 | 14 /19 | 967,348 |

間接経費を含む。
2-10 岡崎共通施設

2-10-1 岡崎情報図書館

岡崎情報図書館は機構（岡崎 3 機関）の共通施設として 3 研究所の図書・雑誌等を収集・整理・保存し、機構（岡崎 3 機関）の職員や共同利用研究者等の利用に供している。

現在（2023年3月）岡崎情報図書館は雑誌 1,521 種（和 291、洋 1,230）、単行本 96,903 冊（和 13,322、洋 83,581）を所蔵している。

また、学術雑誌の電子ジャーナル化の趨勢にいち早く対応するよう努めており、現在、機構（岡崎 3 機関）として約 8,000 種の電子ジャーナルが機構内部からアクセスできるようになっている。

岡崎情報図書館では図書館システムを利用して、図書の貸出しや返却の処理、単行本並びに雑誌の検索等のサービスを行っている。このほか SciFinder、Reaxys 等のデータベース検索や学術文献検索システムによるオンライン情報検索のサービスも行っている。また、ライブラリーカードを兼ね備えた職員証・入構証を使用することによって、岡崎情報図書館は 24 時間利用できる体制になっている。

2-10-2 岡崎コンファレンスセンター

岡崎コンファレンスセンターは、国内外の学術会議などもとより研究教育活動にかかる各種行事に利用できる岡崎 3 機関の共通施設として 1997 年 2 月に竣工した。センターは共同利用研究者の宿泊施設である三島ロッジに隣接して建てられている。

岡崎 3 機関内の公募によって「岡崎コンファレンスセンター」と命名された建物は、延べ床面積 2,863 m²、鉄筋コンクリート造 2 階建てで、大型スクリーン及び AV 機器等を備えた 200 余名が参加可能な大隅ホール、112 名の中会議室、100 名の小会議室などが設けられている。

2-10-3 岡崎共同利用研究者宿泊施設

自然科学研究機構岡崎 3 機関には、日本全国及び世界各国の大学や研究機関から共同利用研究等のために訪れる研究者のために三島ロッジ及び明大寺ロッジという共同利用研究者宿泊施設がある。施設概要は下記のとおりで、宿泊の申込みは、訪問する研究室の承認を得て、web 上の専用ロッジ予約システムで予約する。空室状況も同システムで確認することができる。また、明大寺ロッジでは総合研究大学院大学に所属する留学生用にも 8 室を割り当てている。平成 27 年度より、三島ロッジの一部を大学院生用のシェアハウスとして貸与している。

<table>
<thead>
<tr>
<th>宿数</th>
<th>シングル</th>
<th>ツイン</th>
<th>ファミリー</th>
</tr>
</thead>
<tbody>
<tr>
<td>三島ロッジ</td>
<td>60 室</td>
<td>14 室</td>
<td>12 室</td>
</tr>
<tr>
<td>明大寺ロッジ</td>
<td>14 室</td>
<td>3 室</td>
<td></td>
</tr>
</tbody>
</table>

共同設備：炊事場、洗濯室、公衆電話、情報コンセント

2-10-4 職員会館

職員会館は機構（岡崎 3 機関）の福利厚生施設として建てられ、多様な面にて日常の活動に供している。

地下	トレーニングルーム
1 階 | 生事中 |
2 階 | 大会議室、特別食堂、和室、生協 |
2-11 知的財産

分子科学研究所では、特許出願、特許権の帰属等に関する実質的な審議を行うため、知的財産委員会を設けている。委員会は、概ね各領域から教員1名、装置開発室ユニット長、国際研究協力課長、財務課長から構成されている。この分子科学研究所知的財産委員会での議決を機構長に報告し、機構として特許出願等を行うことになる。法人化によって知的財産の研究機能による保有が円滑に行われるようになり、独創的な技術や物質開発に対する権利が相応に保証されるシステムが確立され、知的財産権の保有に対する評価が根付いてきたため、研究所における特許保有件数は着実に増加している。内容は、ゲルマクレンおよび香料組成物、光誘起力測定装置など多岐にわたっている。特許取得を基にした企業との共同研究も盛んであり、基礎科学の成果が企業を通して社会に還元される道を作っている。一部の成果は実用化され、2020年度以降は、特許収入の増加につながっている。

2021年度の発明件数は、個人有としたもの0件、機構有としたもの3件、2022年度は、個人有0件、機構有4件であった（2023年3月31日現在）。

特許登録数と特許料収入

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第2期</th>
<th>第3期</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td>年度</td>
<td>2010 ～2015</td>
<td>2016 ～2021</td>
<td>2022</td>
</tr>
<tr>
<td>出願件数</td>
<td>67</td>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>国内</td>
<td>37</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>国外</td>
<td>30</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>登録件数</td>
<td>59</td>
<td>61</td>
<td>8</td>
</tr>
<tr>
<td>国内</td>
<td>37</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>国外</td>
<td>22</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>総保有件数</td>
<td>66</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>国内</td>
<td>44</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>国外</td>
<td>23</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>特許料収入（千円）</td>
<td>内外合計</td>
<td>1,670</td>
<td>54,548</td>
</tr>
</tbody>
</table>
分子科学研究所の概要
大学共同利用機関としての分子科学研究所は、所外の分子科学及び関連分野の研究者との共同研究を積極的に推進しており、全国の研究者からの共同研究の提案を運営会議で審議し、採択された共同研究に対しては旅費及び研究費の一部を支給している。また、海外の研究者との共同研究に対しては、研究者の派遣及び相手国研究者招へいのための国際共同研究事業を行っている。国際交流協定に関しては 3-2-1 項に、東アジアやASEAN 諸国との国際交流や国際インターンシッププログラムに関しては 5-6 項に詳述する。

分子科学研究所は、また大学共同利用機関を基盤機関とする総合研究大学院大学・物理科学研究科に属し、構造分子科学専攻と機能分子科学専攻の二つの大学院専攻を持ち、他の大学院では整備されていない各種の高度な大型の研究施設・実験設備を活用して特色のある大学院教育を行っている（設立時は博士課程後期 3 年のみ：2006 年度より 5 年一貫制博士課程）。総合研究大学院大学（総研大）としての分子科学研究所の 2 専攻では、分子科学における最先端の基礎研究を行うとともに、学生の研究課題に応じて、複数指導体制を採用し、研究活動に寄与する学生セミナー、国際シンポジウム、共同研究等を通じて若手研究者育成のための大学院教育を行っている。さらに、他大学の大学院生や学部学生に対しても、それぞれ受託大学院生（特別共同利用研究員制度による）、体験入学者として受け入れ、先端的な研究施設を用いて積極的な教育研究活動を行っている。2023 年度には分子科学 2 専攻は総研大の改組によって分子科学コースとして統合されるが、教育面で本質的に大きな変更はない。

2020–2022 年度の 3 年間はコロナ禍により、外部からの研究者の出入りが伴う共同利用、多くの人が集う研究会、海外との往来が不可欠な国際インターンシップ、院生の研究教育を有する学会参加・発表、外部との研究交流、全てが低調に陥ってしまった。コロナ禍が収束を迎えつつある現状では研究会や国際共同研究、国際インターンシップに関しては少し前後来の活力を取り戻しつつある。一方で大学院への留学進学者は 3 年に亘ってほぼシャットダウンしており、人材の掘り起こしは急務であろう。

いつの時代にも、どのような体制下・環境下でも自然科学研究の本質が変わるものではない。分子科学研究所はポスト・コロナにおいてますます、全国共同利用機関として、アジアの研究ハブとして、また高度専門的な大学院教育の場としての役割を発展的に担っていく。
3-1 共同利用研究

3-1-1 共同利用研究の概要

大学共同利用機関の重要な機能として、所外の分子科学及び関連分野の研究者との共同利用研究を積極的に推進している。そのために共同利用研究者宿泊施設を用意し、運営会議で採択されたテーマには、旅費及び研究費の一部を支給する。次のカテゴリーに分類して実施している。関係機関に通知して、前期・後期の年2回の課題公募を行っており（前期には通年の課題も受付け）、また随時申請を受け付ける。)

(1) 課題研究：所内および複数の所外研究機関に所属する数名の研究者により、特定の課題について行われる研究。

(2) 協力研究：所内の教授又は准教授等と協力して行う研究。（原則として1対1による）。

(3) 研究会：分子科学的研究に関連した特定の課題について、所内外の研究者によって企画される研究討論集会。

(4) 若手研究活動支援：大学院生が主体的に企画する分子科学に関連する研究会や勉強会等。

(5) 岡崎コンファレンス：将来展望、研究の新展開の議論を主旨とする小規模な国際研究集会。

(6) 施設利用

①UVSOR 施設利用：原則として共同利用の観測システムを使用する研究。

②機器センター施設利用：機器センターに設置された機器の個別的利用。

③装置開発室施設利用：装置開発室に設置された機器の個別的利用。

④計算科学研究センター施設利用：計算科学研究センターに設置されたスーパーコンピュータを利用する研究。

3-1-2 2022年度の実施状況

(1) 課題研究

課 題 名（通年） 提案代表者
CO₂の水中電気還元に有効な金属錯体－炭素電極の高耐久性を目指した不活性化機構の解析と解明 名古屋大学 斎藤 進
溶液軟X線吸収分光法による核山クロスカップリング反応機構の解明 九州大学 藤川 茂紀

(2) 協力研究

課 題 名（通年） 提案代表者
高分解能モノクロマスコープによる実用有機半導体材料の軌道トモグラフィ 筑波大学 山田 洋一
ナノスケール蓄光材料の新規開発と有機・無機媒体への分散 名城大学 西山 桂
スポット解析型高分解能電子線回折（SPA-LEED）によるツイスト2層グラフェンの構造解析 九州大学 田中 慎

42 共同研究と大学院教育
トポロジカル物質におけるスピン偏極局所電子状態の解明
東北大学 佐藤 宇史
垂直磁気異方性を有する薄膜界面の作製と電子状態の精密計測への応用
東京大学 岡村 宏太
脊椎動物の季節適応を制御する分子の生化学的解析
名古屋大学 吉村 綾
単結晶有機半導体「準ホモエピタキシャル」接合の太陽電池応用への試み
東京理科大学 中山 泰生
超低電圧駆動有機 EL デバイスの開発および性能評価
富山大学 森本 勝大
有機ホウ素化合物による非フーレン型半導体の開発と太陽電池の作製評価
名古屋工業大学 小野 克彦
Momentum Microscopy 装置による 3D フェルミ面計測手法の確立とその応用
大阪大学 田中慎一郎
超厚膜グラフェンを用いた独自の高効率電子電荷移動体セルの開発
東京大学 三石 郁之
ジルコニウム (S-S) 結合の触媒的開裂と再構築による非対称ジルコニウムの合成
山形大学 皆川 真規
高次非線形分光計測による界面水物性の分子論的解析
慶應義塾大学 楊 崧
ポリグリタミン誘導体とリピート関連性非 ATG 依存性翻訳産物へのレーザー照射後の構築手法の分子シミュレーション
群馬大学 中村 和裕
シュタウディンガーイリゲーション法を用いた N 結合型糖鎖構造構築反応の開発
名古屋大学 鈴木 透正
BLAU の Momentum Microscope でのスピン物性科学の展開
京都大学 生方 宏樹
六方晶格子を持つ水素化物ハイドリウム化合物 BaH3X (X = Cl, Br, I) のヒドリド導電特性
東京大学 青木 佳之
チロシンの超薄膜グラフェンを用いた独自の高効率電子電荷移動体セルの開発
東京大学 田中慎一郎
超厚膜グラフェンを用いた独自の高効率電子電荷移動体セルの開発
東京大学 三石 郁之

課 題 名（前期） 提案代表者
Chirality-Induced Spin Selectivity の基礎理論研究 放送大学 岸根順一郎
PyBTM 及び F2PyBTM 安定発光性ラジカルのパラ置換体の開発 龍谷大学 服部 陽平
イリジウム短編弱層化に作用するマグネット体の評価 青山学院大学 黄 昌次
分子光と電子の局所性に関する研究名古屋大学 伊藤 孝善
光機能性分子材料の電子と振動の自由度が協奏する光化学過程の測定 九州大学 宮田 憲志

課 題 名（後期） 提案代表者
イリジウム単結晶薄膜上に化学気相成長したグラフェン膜の評価 青山学院大学 黄 昌次
光電子運動量解織体の研究名古屋大学 伊藤 孝善
軽い時間コヒーレントを持つ高輝度 EUV 光を実現する HIPER コヒーレント高輝度光の開発 京都大学 伊藤 孝善
高磁場環境下での自由電子レーザの発振の研究 秋田工業高等専門学校 坂本 文人

課 題 名（前期） 提案代表者
UVSOR-III における多様な量子ビームの発生と先端利用に関する研究会 北海道大学 吉野 進彦
軟 X 線共鳴散乱・反射率 Diamond Light Source 荒木 暁
ソフトマテリアル・ソフトマターのナノ~メソスケール構造解析 東京工業大学 上野 隆史
生体分子材料を探る：発動分子のさらなる理解と設計に向けて 東京工業大学 上野 隆史

課 題 名（後期） 提案代表者
UVSOR-III における多様な量子ビームの発生と先端利用に関する研究会 北海道大学 吉野 進彦
軟 X 線共鳴散乱・反射率 Diamond Light Source 荒木 暁
ソフトマテリアル・ソフトマターのナノ~メソスケール構造解析 東京工業大学 上野 隆史
生体分子材料を探る：発動分子のさらなる理解と設計に向けて 東京工業大学 上野 隆史

課 題 名（前期） 提案代表者
第 20 回 ESR 夏の学校：ESR 装置の基礎と原理・生物応用 神奈川大学 野平 彈

課 題 名（後期） 提案代表者
第 20 回 ESR 夏の学校：ESR 装置の基礎と原理・生物応用 神奈川大学 野平 役
<table>
<thead>
<tr>
<th>課題名（前期）</th>
<th>提案代表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンクロトロン放射光による高精細ソフトX線吸収分光法による高効率有機太陽電池のための金属ドープシング金属酸化物の伝導帯電子構造解析</td>
<td>北浦 守</td>
</tr>
<tr>
<td>H-MFIゼオライト上の光化学反応活性種のXANESによるMTB触媒反応時の光化学反応の構造解析</td>
<td>垂野 幸司</td>
</tr>
<tr>
<td>4K筋吸収分光による金属原子を内包した0次元シリコンケージ構造体のシリコン原子の構造解析</td>
<td>岩本 嘉一</td>
</tr>
<tr>
<td>日本共同・太陽フレアX線集光撮像分光観測FOXSI-4搭載装置の開発と評価</td>
<td>国立天文台</td>
</tr>
<tr>
<td>星間光吸収分光による宇宙ガリレオの局所構造とM-edge XANESスペクトルに関する基礎的検討</td>
<td>札幌大学</td>
</tr>
<tr>
<td>共添加二酸化チタンにおける添加元素の局所環境解析</td>
<td>千葉大学</td>
</tr>
<tr>
<td>ダブルスピネル構造中カチオンの局所構造</td>
<td>岩本 嘉一</td>
</tr>
<tr>
<td>NEXAFS分光用試料搬送装置を用いた電池材料の大気非暴露分析</td>
<td>九州大学</td>
</tr>
<tr>
<td>紫外光電子分光法による金属ドープした金属酸化物ナノ粒子/有機薄膜界面の電子状態評価</td>
<td>千葉大学</td>
</tr>
<tr>
<td>君酸中一重項酸素の生成ダイナミクスの軟X線吸収分光法による研究II</td>
<td>高エネルギー加速器研究機構</td>
</tr>
<tr>
<td>X線散乱によるメタチック液晶中のナノクラスター構造と強誘電性の相関探索</td>
<td>理化学研究所</td>
</tr>
<tr>
<td>金属カルボニル化合物のX線散乱測定</td>
<td>東京大学</td>
</tr>
<tr>
<td>金表面上の生体分子のX線吸収分光</td>
<td>北海道大学</td>
</tr>
<tr>
<td>水中での酸素二重側の電子状態とイオンサイト構造</td>
<td>九州大学</td>
</tr>
<tr>
<td>溶液光化学反応のX線吸収分光測定</td>
<td>千葉大学</td>
</tr>
<tr>
<td>ビームライン整備</td>
<td>千葉大学</td>
</tr>
<tr>
<td>共鳴軟X線散乱法によるポリマーの構造解析</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>人工光合成をめざす半導体光触媒の水中XAFS測定：金属カチオン外殻電子遷移の計測</td>
<td>理化学研究所</td>
</tr>
<tr>
<td>水・DMSO二成分液系における水の電子構造変化</td>
<td>関西大学</td>
</tr>
<tr>
<td>オペランド軟X線XAFS観測による炭素Co-Ni水分解触媒の活性化メカニズムの解明</td>
<td>名古屋大学</td>
</tr>
<tr>
<td>Temperature Dependence of the Interaction of Calcium Dication with Water Probed by X-Ray Absorption Spectroscopy</td>
<td>Synchrotron SOLEIL</td>
</tr>
<tr>
<td>次世代中性K中間子場効果実験に向けたシンチレータ類の別表番計数法による放射寿命測定による詳細評価</td>
<td>CEOLIN, Denis</td>
</tr>
<tr>
<td>ランダム構造・発光原因の生成もしくは激変の原因解明の核スペクトルを用いた電荷進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>自己発光パーキャンパル酸化物シンチレータにおける電子進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>深紫外発光材料の成長方位と結晶性の評価</td>
<td>京都大学</td>
</tr>
<tr>
<td>整備課題（リモート測定に向けた整備）</td>
<td>名古屋大学</td>
</tr>
<tr>
<td>ランダムキャピティーガスの解離過程の解析</td>
<td>広島大学</td>
</tr>
<tr>
<td>強相関二電子の電流発生が形成化を形成するメカニズムの研究</td>
<td>大阪大学</td>
</tr>
<tr>
<td>三元化合物・アルカリ金型化合物の光学特性の研究</td>
<td>大阪大学</td>
</tr>
<tr>
<td>データベース構造・発光原因の生成もしくは激変の原因解明の核スペクトルを用いた電荷進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>自己発光パーキャンパル酸化物シンチレータにおける電子進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>深紫外発光材料の成長方位と結晶性の評価</td>
<td>京都大学</td>
</tr>
<tr>
<td>整備課題（リモート測定に向けた整備）</td>
<td>名古屋大学</td>
</tr>
<tr>
<td>ランダムキャピティーガスの解離過程の解析</td>
<td>広島大学</td>
</tr>
<tr>
<td>強相関二電子の電流発生が形成化を形成するメカニズムの研究</td>
<td>大阪大学</td>
</tr>
<tr>
<td>三元化合物・アルカリ金型化合物の光学特性の研究</td>
<td>大阪大学</td>
</tr>
<tr>
<td>データベース構造・発光原因の生成もしくは激変の原因解明の核スペクトルを用いた電荷進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>自己発光パーキャンパル酸化物シンチレータにおける電子進移動発光の観測</td>
<td>神戸大学</td>
</tr>
<tr>
<td>深紫外発光材料の成長方位と結晶性の評価</td>
<td>京都大学</td>
</tr>
<tr>
<td>整備課題（リモート測定に向けた整備）</td>
<td>名古屋大学</td>
</tr>
<tr>
<td>ランダムキャピティーガスの解離過程の解析</td>
<td>広島大学</td>
</tr>
<tr>
<td>強相関二電子の電流発生が形成化を形成するメカニズムの研究</td>
<td>大阪大学</td>
</tr>
<tr>
<td>三元化合物・アルカリ金型化合物の光学特性の研究</td>
<td>大阪大学</td>
</tr>
</tbody>
</table>
バイロクロア型酸化物中希土類イオンの存在位置の広がりが真空紫外・紫外・可視域遷移スペクトル形状に与える影響の解析

アポトーシスのクロマチン凝集過程におけるDNAリン酸結合状態の可視化

レッドストーン型電池の電極材料のオペレーション電子状態解析

高電位型Li-Fe-Mn-Co系ポリニオン正極材料の酸化還元反応分布の観測

STXMによる細胞核内の核酸およびタンパク質分布解析の高精度化

走査型透過X線顕微鏡を用いたポリマーの湿度制御下における化学状態変化

ビームラインおよびSTXMの整備

グラフェン超薄膜を用いた高機能汎用型光学素子の開発

小惑星リュウグウに記録される分子多様性に記録される真の地球外有機物進化の決定

Hunting for Organosulfur and Organonitrogen Content in Aged Dust Aerosol Particles Transported by Extreme Dust Storms

STXM in Characterizing Lysosomal Storage Materials in Salla Disease Mouse Model

Probing of Drugs and Nanocarriers in the Viable Parts of Human Skin

Understanding Interface Kinetics between Primary Battery Particles (LiCoO2) and Solid Electrolyte via Operando STXM

Interfacial Engineered Nanostructural Photocatalysts for Efficient Water Decomposition

有機-無機界面磁気結合を利用した原子層物質の磁気状態制御

XMCDを用いたβ-Mn型カイラル磁性体Fe2-,Pd,xMo3NおよびCo2-,Pd,xMo3Nエピタキシャル薄膜における磁気状態の研究

原子分離能・電界放出観測の開発

磁気ボルト型電子発生器を用いた電子同時計測

易磁化試料用光電子分光機の開発とシステム評価

反射率測定における特異性体質の立体構造

原子間距離測定に基づく新規試料の開発

アモルファス半導体薄膜の光照射及び熱処理効果に関する研究

グラフェン超薄膜の紫外・X線透過率測定

高効率水分解水素生成光電極設計に向けた高濃度3d遷移金属添加AlNの光照射下の電子構造解析

白色発光特性を有する炭素含有多孔質シリカ中の炭素の局所構造の解明

軟X線内殻吸収分光で明らかにするスピンクロスオーバー現象に関連する錠配位高分子の配位子場効果

高分光学ARIESを用いた新奇カゴメ超伝導体への元素置換効果

高分子分光ARIESを用いた二元単層ホウ化銅の電子状態の研究

垂直磁気異方性を示すMn合金のスピン分解・軌道分解光電子分光

角度分解光電子分光によるグラフェン超薄膜の界面効果の研究

BLUS光電子エンクロスステーションの整備と開発

【募集要項】狭ギャップ半導体・半金属における自発的励起子の探索

偏光依存角度分解光電子分光によるZr2SnC2の表面電子状態の研究

原子制御した3次元立体構造シリコン(111)フェライト上に作製した超薄膜からの光電子分光

層状希土類化合物における電荷密度波振動

層状化合物分光電子分光による新奇トポロジカル相の開拓

ARIESによる鋼酸化物高温超伝導相関相図の再考

合金を用いた多層膜反射鏡の特性調査

探査機能用光電子フィルタの性能評価

感度探査に向けた紫外外吸収分光フィルタの性能評価

可視域発光観測に及ぼす真黒紫外光の偏光効果

中・遠赤外吸収分光による高質量度有機半導体単結晶の分子・格子振動の探索

時間分解赤外吸収分光による光電変換物質の電子-格子相互作用とポーラリオンダイナミクスの解明

強相関半導体の光発生起因在・非晶転移の空間分布の観測

放射光顕微赤外分光を用いた解離分光基化合物の構造解析

共同研究と大学院教育 45
<table>
<thead>
<tr>
<th>課題名（後期）</th>
<th>提案代表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>可視光ガマン線同時照射電子電流消減寿命光分光による干渉不活発な光化学反応の光起電流の測定</td>
<td>山形大学 北浦 守</td>
</tr>
<tr>
<td>その場電子消減測定における情報の応用</td>
<td>千葉大学 藤浪 直紀</td>
</tr>
<tr>
<td>γ線偏光光電真空圧電マテリアルの基礎研究</td>
<td>東京大学 鳥海 健次</td>
</tr>
<tr>
<td>ガンマ線誘起電子消光分光のパルク</td>
<td>分子科学研究所 平 義義</td>
</tr>
<tr>
<td>高エネルギー分光電子分光による電気化学物質の知能発見に関する研究</td>
<td>核融合科学研究所 小林 政弘</td>
</tr>
<tr>
<td>BL1U アンプラレクト用のFl-ICS ガンマ線の特性と NRF 反応断面積測定に</td>
<td>京都大学 大垣 勉</td>
</tr>
<tr>
<td>関する研究</td>
<td></td>
</tr>
<tr>
<td>電線性素子のキャリブレーションにおける紫外外反射スペクトル測定</td>
<td>京都大学 戸田 剛</td>
</tr>
<tr>
<td>パルク金属中の水素 - 欠陥相互作用の動的挙動解明のための LCS ガンマ線入射 - 電子消減測定</td>
<td>大阪公立大学 橋 史輝</td>
</tr>
<tr>
<td>新型導電性化合物の孤立性電子光二重性の研究</td>
<td>広島大学 高口 博志</td>
</tr>
<tr>
<td>【審査免除】 X 線ダブルバ尔斯による多電子波動の量子干涉</td>
<td>九州シンクロトロン光科学センター 金安 進夫</td>
</tr>
<tr>
<td>単 - 電子からのアンプラレクト放射の観測</td>
<td>埼玉工業大学 藤森 博文</td>
</tr>
<tr>
<td>軟 X 線吸収分光法による高効率有機太陽電池のための金属ドーピング金属酸化物の伝導帯電子構造解析</td>
<td>千葉大学 平 久幸</td>
</tr>
<tr>
<td>H-MFI ゼオライト上の炭素リポジット活性種の XANES による MTB 触媒反応時の化学挙動の</td>
<td>広島工業大学 中崎 一信</td>
</tr>
<tr>
<td>行動の構造解析</td>
<td></td>
</tr>
<tr>
<td>X 線吸収分光法による金属原子を内包した MFI シリコンケージ構造体のシリコン原子の</td>
<td>慶應義塾大学 田中 亮</td>
</tr>
<tr>
<td>構造解析</td>
<td></td>
</tr>
<tr>
<td>日本共創・太陽フレア X 線集光像光分光観測ロケット実験 FOXSI-4 搭載装置の開発</td>
<td>国立天文台 典之</td>
</tr>
<tr>
<td>と評価</td>
<td>理化学研究所 布川 史人</td>
</tr>
<tr>
<td>素子群存在物質を有する複合酸化物の局所構造と M-edge XANES スペクトルに関する基礎的研究</td>
<td>京都大学 朝倉 博行</td>
</tr>
<tr>
<td>共存多酸化チタンにおける化学反応触媒反応の環境解析</td>
<td>大阪公立大学 村田 秀信</td>
</tr>
<tr>
<td>ダブルスルフェネル構造中にチタン原子の</td>
<td>九州大学 吉原 聡</td>
</tr>
<tr>
<td>分光解析</td>
<td>九州シンクロトロン光科学センター 小林 哲一</td>
</tr>
<tr>
<td>NEXAFS 分光法による試料搬送装置を用いた固体電解質の分析</td>
<td></td>
</tr>
<tr>
<td>軟 X 線放射分光法による金属をドープした金属酸化物ナノ粒子 / 機械膜界面の電子状態評価</td>
<td>千葉大学 奥平 幸司</td>
</tr>
<tr>
<td>各種共鳴状態を利用した軽 X 線散乱によるソフトマター超分子構造の探索</td>
<td>京都大学 新川 彰</td>
</tr>
<tr>
<td>金属カルボニル化合物液体試料についての XAS 測定</td>
<td>理化学研究所 荒川 貴之</td>
</tr>
<tr>
<td>金表面温度における生体分子の X 線吸収分光</td>
<td>東京大学 佐々木孝彦</td>
</tr>
<tr>
<td>水中での脂質二重層の電子状態とイオン分布の</td>
<td>東京工業大学 大野 真也</td>
</tr>
<tr>
<td>構造</td>
<td>高橋技術科学大学 手老 龍吾</td>
</tr>
<tr>
<td>溶液光化学反応の軽 X 線吸収分光測定</td>
<td>分子科学研究所 小原 将成</td>
</tr>
<tr>
<td>ビームライン整備</td>
<td>分子科学研究所 小原 将成</td>
</tr>
<tr>
<td>整備課題（共鳴軽 X 線散乱測定）</td>
<td></td>
</tr>
<tr>
<td>軽 X 線吸収分光法を利用した電解生成型メタン酸化触媒活性種の電子状態解析</td>
<td>名古屋大学 山田 泰之</td>
</tr>
<tr>
<td>軽 X 線共鳴散乱による自発形成螺旋周期構造生成の精密構造解析</td>
<td>京都大学 高西 陽一</td>
</tr>
</tbody>
</table>

46 共同研究と大学院教育
人工光合成をめざすチタン酸ストロンチウム（SrTiO₃）光触媒の水中XAFS測定
水・MSMO 2 成分溶液系における水の電子構造変化
Understanding the Inter-Ion Interactions in Natural Salt Brines from a Martian Analogue Site

次世代中性 K 中間子稀崩壊実験に向けたシンチレーター類の単一光子計数法による萤光寿命測定による詳細評価
バンド構造・発光起源と結晶構造の包括的解明による赤色発光シンチレーターの創成
自己発光ポルタゲン化合物シンチレーターにおける電荷移動発光性の調査
深紫外発光アルミニウム亜鉛箔の成長方位と結晶性の評価
整備課題（リモート測定にむけた整備）

【審査免除】人工光合成をめざすチタン酸ストロンチウム（SrTiO₃）光触媒の水中XAFS測定
水・DMSO 2 成分溶液系における水の電子構造変化
Understanding the Inter-Ion Interactions in Natural Salt Brines from a Martian Analogue Site

次世代中性 K 中間子稀崩壊実験に向けたシンチレーター類の単一光子計数法による萤光寿命測定による詳細評価
バンド構造・発光起源と結晶構造の包括的解明による赤色発光シンチレーターの創成
自己発光ポルタゲン化合物シンチレーターにおける電荷移動発光性の調査
深紫外発光アルミニウム亜鉛箔の成長方位と結晶性の評価
整備課題（リモート測定にむけた整備）

【審査免除】人工光合成をめざすチタン酸ストロンチウム（SrTiO₃）光触媒の水中XAFS測定
水・DMSO 2 成分溶液系における水の電子構造変化
Understanding the Inter-Ion Interactions in Natural Salt Brines from a Martian Analogue Site

次世代中性 K 中間子稀崩壊実験に向けたシンチレーター類の単一光子計数法による萤光寿命測定による詳細評価
バンド構造・発光起源と結晶構造の包括的解明による赤色発光シンチレーターの創成
自己発光ポルタゲン化合物シンチレーターにおける電荷移動発光性の調査
深紫外発光アルミニウム亜鉛箔の成長方位と結晶性の評価
整備課題（リモート測定にむけた整備）

【審査免除】人工光合成をめざすチタン酸ストロンチウム（SrTiO₃）光触媒の水中XAFS測定
水・DMSO 2 成分溶液系における水の電子構造変化
Understanding the Inter-Ion Interactions in Natural Salt Brines from a Martian Analogue Site
共同研究と大学院教育

④ 計算科学研究センター施設利用

提案者

東京大学 吉岡 和夫
立教大学 桑原 正輝
高エネルギー加速器研究機構 史朗
名古屋大学 三石 郁之
東京理科大学 中山 泰生
分子科学研究所 西田 純

大阪大学 木村 真一
高エネルギー加速器研究機構 川崎 平康
広島大学 戸田ひかる
東北大学 佐藤 史史
千葉大学 石井 久夫

東京工業大学 平原 微

千葉大学 北海道大学 京都大学
大阪大学 京都大学 名古屋大学
広島市立大学 広島大学 京都大学
名古屋大学 広島大学 横浜市立大学
神戸大学 長浜バイオ大学
量子化学研究協会研究所 光合成科学研究所
産業技術総合研究所 神戸大学
中央大学 東北大学

48 共同研究と大学院教育
シクロペンタジエノン金属錯体による金属配位子協働的結合切断反応の開発と有機デバイス指向した芳香化合物の設計

多環芳香族分子(PAHs)の水和構造の赤外光分光による研究

第一原理計算による量子化学と先進的電子状態理論の多角的展開

分子動力学及び量子化学計算を用いた生体高分子および機能材料の構造と機能に関する研究

東京大学

量子化学と統計力学に基づく複雑化学系の理論的研究

東京大学

ヘロナミド類の抗真菌作用メカニズムの解明のための計算分子設計技術の開発

京都大学

構造多糖類および関連タンパク質分子の分子進化シミュレーション研究

京都大学

完全分子動力学計算の高分子研究への展開

横浜国立大学

ナノ制限空間における溶媒鎖と動的解析

大阪大学

光合成顕素発生中心CaMn₄O₅クラスターの構造、電子・スピン状態および反応性に関する理論的研究

東京大学

三次元パイ共役分子の構造と物性

大阪市立大学

ナノ炭素・アミノ酸・クラスターの反応動力学の量子化学的研究

電気通信大学

三脚バウ状の基生成電反応における電荷の形成に関する研究

名古屋大学

カレオニモデルによるタンパク質構造移をともなう機能発現機構の自由エネルギー計算

静岡大学
水の輸送係数に対する構造規則性の寄与と相互作用モデルの関係

ポルフィリロン化合物合成への物理的、化学的、および本格論の活性評価研究

新潟ナノカーボン・共役ニードル分子群創出に向けた合理的な分子・反応・機能デザイン

Electronic Trapping and Surface Protonation in TiO2 Nanostructures

ラジカルカチオン性有機金属分子ワイヤーとスイッチの開発

多核金属分子をもつ金属錯体の構造および反応性に関する研究

計算分子光化学: 分子の構造および反応に関する計算化学

気相イオンの温度制御に関する研究

フラメメント分子軌道法による FIV プロテアーゼと HIV-1 プロテアーゼ阻害剤の相互作

用解析

液体の統計力学理論による生体分子の機能解析

電極と電子系の設計・合成を基軸とした超分子集合体の創製

学的解釈のための気相中分子・分子電子励起状態精密量子化学計算

タンパク質に結合する人工オポラミドのイオンコロド設計

DFT 分子動力学計算を用いた溶融塩中の放射性廃棄物の溶解度評価

単層カーボンナノチューブの構造制御合成に向けた分子動力学シミュレーション

ジボリーコールアミド系有機配位子によるランタノイド/マイナーアクチノイドイオンの
選択的抽出に関する論理的研究

分子動力学と第一原理計算を用いた有機結晶および液体の熱物性および熱電効果の計算
科学的研究

分子動力学シミュレーションを用いた模タタンパク質の構造、機能、ダイナミクス解析

曲げ変形に関する液体安定性の分子動力学による研究

シミュレーションに基づく分子モデリティの理解・制御・設計

反応自動探索法の開発と応用

3d 遷移金属からなる均一系及び不均一系触媒による CO2 還元反応機構の調査

実験結果と計算による有機反応機構解析

光反応表面水素による光応答機構の解析

新規高機能性の不斉触媒研究とベイズ最適化・機械学習への応用

酸化物結晶および融体における構造緩和を駆動力とした不規則錯体構造の自発的形成過程の
解析

分子動力学計算による高機能性機能材料の水中接着メカニズムの解明

Computational Investigation of Colossal Dielectric Permittivity Materials and Chemical Bonding
Features of Transition Metal Dioxides

五核鉄クラスターの電子状態と反応性の解析

粘度的基本セルサイズ効果をも踏まえた分子動力学シミュレーションによる巨大分子の
流体力学半径と水和の関係

分子金属錯体および多核クラスターの精密制御と電子状態の解析

新規合成反応、新機能の創出を志向した理論化学的解析

ナノカーボンと有機物を用いた機能材料の計算化学シミュレーション

Computational Investigation of Collosal Dielectric Permittivity Materials and Chemical Bonding
Features of Transition Metal Dioxides
マイクロフロー反応場を用いて創製される準安定超分子構造の解析

Theoretical Studies of Light-Matter Interactions in Molecular Systems

京都府立大学
京都大学

第一列遷移金属触媒の光応答に関する理論化学的検証

北海道大学

オニオン液体−分子性液体混浴モデルに基づく相互作用と混合状態の解析

熊本大学

大環状多核金属錯体の動的特性と触媒活性の探索

名古屋市立大学
東京大学

遷移金属錯体等の分子の電子状態に関する理論的研究および量子計算の古典シミュレーション研究

大阪大学

新規キノノイド系分子の合成と応用

茨城大学

イオン液体−分子性液体混浴モデルに基づく相互作用と混合状態の解析

佐賀大学

新規キノノイド系分子の合成と応用

九州工業大学

アレーン類のアダマンタン縮環反応の反応機構解明および新奇π共役系分子の構造物性解明

名古屋大学

半合理的手法により構築された主鎖構造による人工タンパク質設計

名古屋大学

ヘテロ酸化還元触媒の創製

日本原子力研究開発機構
大阪大学

αチューブリン末端領域の翻訳後修飾が微小管構造集団に与える影響の分子解析

名古屋大学

4次元MRIによる脳の機能及び構造解析

信州大学

機械学習を用いた脳機能画像解析

延岡工業大学

拡張アンサンブル法による分子シミュレーション

東邦大学

選択的反応における溶媒効果と反応機構に関する理論研究

名古屋大学

イオン種に対する高分解能振動回転分光による分子間相互作用の研究

日本原子力研究開発機構
大阪大学

外場からの摂動下にある分子およびその集合体の計算化学的検討

東京大学

分光化学による有機化合物及び有機金属化合物を用いた新規反応の機械解析

早稲田大学

モデル溶融塩からなる溶媒の相関関数を正確に求める方法論の開発

兵庫県立大学

πクラスター分子の電子物性の解明

関西医科薬科大学

キノノイド分子の電子励起状態エネルギーレベルおよび構造の量子化学計算

名古屋大学

新規機能性有機色素の開発

信州大学

量子化学計算による反応機構の解明

岐阜大学

熱活性化遅延蛍光材料の仮想スクリーニング

岐阜大学

4dまたは5d金属を含む多核金属錯体の電子状態

岐阜大学

NQR法による核磁気共鳴に基づく分子動的解析

岐阜大学

新規キノノイド系分子の合成と応用

岐阜大学

分子映像解析

岐阜大学

抗生物質耐性分子メカニズムの理論的研究

岐阜大学

共同研究と大学院教育
統計学的手法による超原子価ヨウ素試薬の置換基効果の解明
大阪大学
西本 龍弘

原子核の量子効果を考慮した理論計算手法による水素結合系の解析
岐阜大学
宇田川太郎

イオン・原子及びイオン・分子衝突の理論的研究
宮崎大学
五十嵐明則

量子化学計算によるペプチド形成過程の解明
早稲田大学
巻橋 知士

新規生物活性物質の設計・合成・機能評価
九州大学
平井 剛

イソシアニドの挿入数制御に基づくロジウム触媒による含窒素複素環化合物の多様性志向型合成反応の機構研究
京都大学
新林 卓也

配位子保護貴金属クラスターの三重性に関する計算科学的研究
立教大学
三井 正明

量子化学計算を用いた有機合成反応機構および物性の解明
立教大学
糸代 修平

光・磁気・電気的特性を複合的に示す新規分子化合物の開発
大阪工業大学
酒巻 大輔

遷移系イオンを含む化合物の反応制御に関する理論的研究
筑波大学
和佐田裕昭

機能性有機材料の開発のための量子化学計算
東京都立産業技術研究センター
小乞 佳祐

新しい治療法の確立を目指した新規合成の開発
東京大学
三ツ沼治信

分子動力学計算による抗体の分子ネットワークの探査
分子科学研究所
谷中 夸子

新規キラル化合物のキロボンネット効果の理論計算
大阪大学
石割 文崇

固定化分子触媒による新規合成反応の解明
横浜国立大学
長谷川秀俊

新規金属クラスターの電子状態の解明
東京理科大学
新堀 佳紀

光反応中間体のエネルギー解析
大阪大学
大久保 敦

大環状系ラジカルカチオンπダイマーの芳香族性
東京都立大学
西長 亨

有機ケイ素化合物の構造と性質
群馬大学
久新庄一郎

DFT計算を用いた新規C-H活性化反応の機構研究
名古屋大学
平子 直洋

第一原理計算によるPSMO型Mg合金における局所クラスターと相安定性に関する研究
名古屋工業大学
宮崎 秀俊

有機クラスター系の組み立て効果の理論計算
広島大学
高木 俊人

量子化学に基づく生体分子の機能に関する計算科学研究
政谷大学
清野 広司

量子化学計算とインフォマティクスの融合研究
東京工業大学
山本 浩司

第一原理計算手法に基づくナノ電子材料のナノ構造/機能制御に関する研究
東京工業大学
松永 博之

金属鍍体を基盤とした人工光合成反応の開発に向けた理論的研究
大阪大学
小杉 健斗

微細構造を認識する超分子複合系の構築と構造解析
東京工業大学
岩本 一央

高次元構造を有する複素芳香族化合物の理論研究
東京工業大学
武田 洋平

Benzene-CH4 van der Waals錠体における6次元モデルポテンシャル計算と分子間振動波束観測
東京工業大学
山本 浩史

有機半導体分子TIPS-ペンタセンのガウシアンによる振動解析
兵庫県立大学
相賀 隆宏

分子内で芳香族ラジカルカチオンを含む複素系の解析
横浜国立大学
岡本 一央

新規金属クラスターの電子状態の解明
大阪大学
長谷川 慎吾

14族元素を配位原子とする多座配位子・クラスターが結合した遷移金属錯体に関する理論的研究
早稲田大学
平野 一男

Search for Saddlepoints in the syn-anti-periplanar Isomerism of 5,10,15-Triaryl-19-arylbilatriene-abc-onato Nickel (II)
名古屋大学
小室 貴士
光増感剤利用に向けた発光性セリウム錯体の開発
フラットバンドを有する有機分子-金属ハイブリッド系における高温超伝導の理論
分子軌道法による反応予測を基盤とする新有機反応の開発
光と化学的な増感剤を用いた協力的な Si–C 結合開裂反応の反応機構探索
ホスフィン保護 Au11 クラスターのキャリアダイナミクスに与える配位子効果
新規 π 共役系の物性化学研究
量子化学計算を用いた量子テトライオン配列における分子間相互作用およびにキャラリティの評価
金属表面上の生成反応の構造と電子状態
クロスβ構造における量子化学計算を用いた Steric zipper の相互作用エネルギーの算出
古典および量子シミュレータを用いた量子化学計算
オメガ包接剤を有するカラムナー液晶の構造
C1 カルボニル化反応の理論および実験に基づく計算化学的解明
アニリン分子の分光特性に対する溶媒効果の研究
エネルギー材料の分子シミュレーション
非極性水中的弱い相互作用 I: CO, CO2 水上の H 原子の挙動
タンパク質-RNA 複合体系の全原子分子シミュレーション研究
遷移金属錯体および有機触媒を用いた不飽和結合への付加反応における位置および立体選択性の解明
（計算物質科学スーパーコンピュータ共用事業利用枠）

課　題　名（通年）
次世代二次電池・燃料電池開発による ET 革命に向けた計算・データ材料科学
省エネルギー・半導体デバイス開発のための量子論マルチシミュレーション
バイオ分子における X 線誘起非断熱反応動力学の実時間イメージング理論
大規模電子状態計算ベースに有機光デバイス材料の励起子ダイナミクス解析

提案者
物質・材料研究機構　　錦山　佳尚
神戸大学　　天能精一郎
名古屋大学　　押山　淳
理化学研究所　　山崎　馨
量子科学技術研究開発機構　　藤田　貴敏
3-1-3 共同利用研究実施件数一覧
分子科学研究所共同利用研究実施一覧

<table>
<thead>
<tr>
<th>分類</th>
<th>中期計画区分</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年度</td>
<td>2022</td>
</tr>
<tr>
<td></td>
<td>前期</td>
<td>後期</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>共同研究</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 課題研究</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>(2) 協力研究</td>
<td>22</td>
<td>25</td>
<td>47</td>
<td>175</td>
</tr>
</tbody>
</table>

(マテリアル) *2
| | 15 | 25 | 40 | 112 |

<table>
<thead>
<tr>
<th>研究会</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 研究会</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>482</td>
</tr>
<tr>
<td>(4) 若手研究活動支援</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>(5) 岡崎コンファレンス</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>所長招へい *3</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

UVSOR 研究会 *3
| | 1 | 0 | 1 | 14 |

<table>
<thead>
<tr>
<th>施設利用</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) ① UVSOR</td>
<td>104</td>
<td>105</td>
<td>209</td>
<td>1,010</td>
</tr>
</tbody>
</table>

(マテリアル) *2
| | 2 | 3 | 5 | 35 |

(6) ②機器センター (マテリアル) *2
| 61 | 75 | 136 | 397 |

(6) ③装置開発室 (マテリアル) *2
| 5 | 7 | 12 | 52 |

(6) ④計算科学研究センター
| 298 | 0 | 298 | 1,252 |

*1一部課題では UVSOR 利用あり（1999年度後期より UVSOR 協力研究は、協力研究に一本化された）。
*2マテリアル先端リサーチインフラ事業は 2022年度から開始。それ以前はナノテクノロジープラットフォーム事業。
*3公募以外の研究会。

年度ごとの実績として、共同研究と施設利用の分類では課題件数を示す。1(1) 課題研究, (6) ④計算科学研究センターは、通年に1課題を1件のまま計数し、それ以外の通年課題は前期と後期の2期分として、1課題を2件として年度計に表す。研究会の分類では開催件数を示す。ただし、所長招へいは旅費支給者数を示す。

右端列にある登録者数は、共同研究と施設利用の分類では課題登録者数、研究会の分類では参加人数を示す。
3-1-4 分子研研究会プログラム
【学協会連携分子研研究会】
森野ディスカッション
2022年8月31日（水）（オンライン開催）

1. 2022年度研究助成金贈呈式
14:35 伊澤誠一郎（分子研）講演 10分「有機半導体界面での光電変換特性の解明と新機能開拓」
14:50 近藤 慶（東工大）講演 10分「分子分光法を用いた光合成タンパク質の動的な光反応制御機構および機能的なロバスト性の解明」

2. 森野ディスカッション
15:30 講演 A. 池田勝佳（名工大）講演 35分「表面増強分光で探る帯電界面の構造とダイナミクス」
16:25 講演 B. 岡本裕巳（分子研）講演 35分「光学遷移の選択律を破るナノ分光」

【分子研研究会】
金属酸化物：表面と薄膜の構造化学
2022年9月26日（月）分子科学研究所研究棟301号室（ハイブリッド開催）
15:00–16:00 "Surface Structures Drive the Growth of Perovskite Oxide Films”
Michele Riva (TU Wien) ※オンライン
16:00–17:00 "Physical Properties of Defects on Metal Oxide Surfaces Analyzed by Scanning Probe Microscopy”
Taketoshi Minato (Institute for Molecular Science)
17:00–18:00 "Pulsed Laser Deposition of Compositionally Graded Sr-Doped NaTaO3 Thin Films and Their Photoexcited Carrier Dynamics”
Shingo Maruyama (Tohoku University)
18:00–19:00 "Toward Excited-State Molecular Dynamics Analyses of Metaloxide Photocatalysts: Computational Method Developments and Applications”
Hiroki Uratani (Waseda University)

【分子研研究会】
イオン液体の構造と物性予測のデータ解析技術
2022年9月28日（水）～29日（木）岡崎コンファレンスセンター中会議室（ハイブリッド開催）
9月28日（水）
13:30–13:45 「はじめに」
阿部 洋（防衛大）
13:45–14:45 「イオン液体の更なる機能開拓に必要な理論化学的手法の拡張」
森 省敬（中央大）
15:00–16:00 「情報化学によるガス分離吸収性イオン液体の迅速探索と実験検証」
黒木 菜保子（中央大）
16:00–17:00 「実験データ駆動型の情報科学に基づく有機イオン伝導体の物性予測」
島山 信（早稲田大）
17:00–17:30 全体討議
9月29日（木）
09:00–10:00 「イオン液体の低融点を理解する」【ZOOM】
遠藤太白嗣（同志社大）
10:15–11:15 「情報科学を用いた物性評価の自動化」
小野寛太（大阪大）
11:15–12:00 全体討議
12:00–12:05 閉会の挨拶
解良 聡（分子研）
【分子研研究会】
軟X線共鳴散乱・反射率
ソフトマテリアル・ソフトマターのナノ〜メソスケール構造解析
2022年11月8日（火） （オンライン開催）

10:00–10:10 Welcome & Introduction
荒木 暢（Diamond Light Source）

10:10–11:00 Keynote Lecture
Probing Morphology and Chemistry in Complex Soft Materials with In Situ Resonant Soft X-Ray Scattering
Cheng Wang (Advanced Light Source)

11:15–11:40 ニュースペルにおけるフォトレジストの軟X線共鳴散乱／反射率測定
原田 哲男（兵庫県立大学）

11:40–12:05 UVSOR および Photon Factory における共鳴軟X線散乱装置の開発
岩山 洋士（分子科学研究所）

12:05–12:30 軟X線反射率／吸収分光による wet 環境対応薄膜解析装置の検討
～中性子や陽電子を組み合わせたマルチプローブ解析を目指して
山田 悟史（高エネルギー加速器研究機構）

13:30–13:55 Tender X-Ray 領域での合金の ASAXS 測定
奥田 浩司（京都大学）

13:55–14:25 BL15A2 におけるテンダーX線による散乱・反射率法による高分子構造解析
山本 慶夫（名古屋工業大学）

14:25–14:50 中性子を用いた固体高分子形燃料電池の解析
原田 雅史（豊田中央研究所）

15:05–15:30 共鳴軟X線散乱による液晶相精密構造解析への試み
高西 陽一（京都大学）

15:30–15:55 屈曲液晶における超分子カイラル多型ナノ構造
荒岡 史人（理化学研究所）

15:55–16:20 DDS ナノ粒子の構造解析
黒井 一朗（北九州市立大学）

16:30–17:10 Discussion
解良 僚（分子科学研究所）

【分子研研究会】
UVSOR-III における多様な量子ビームの発生と先端利用に関する研究会
2022年11月28日（月） 岡崎コンファレンスセンター（ハイブリッド開催）

08:50～09:00 趣旨説明
（分子研：平義隆）

09:00～09:30 UVSOR 光源開発ビームラインの歴史
（広島大学／分子研：加藤政博）

09:30～10:00 自由電子レーザーの開発と利用・今後の展開
（京都大学：全炳俊）

10:00～10:30 UVSOR でのコヒーレント高次高調波光源の開発
（秋田高専：坂本文人）

10:40～11:10 タンデムアンジュレータによるアト秒制御ダブルパルスの発生と原子分子実験への応用
（SAGA-LS：金安達夫）

11:10～11:40 放射光の時空間構造の測定とその利用の可能性
（広島大学／分子研：加藤政博）

11:40～12:10 紫外円偏光照射による有機物分子のキラリティの発現に関する研究
（核融合研：小林政弘）

13:30～14:00 UVSOR-III におけるガス分子線源の開発と利用及び今後の展開
（分子研：平義隆）

14:00～14:30 ニュースペル線ビームライン BL01 の現状
（兵庫県立大学：橋本 哲）

14:30～15:00 ガス分子線を用いた原子核物理実験とその応用
（京都大学：大垣英明）

15:10～15:40 偏光検出コンプトンカメラの開発と応用
（東京大学：島添健次）

15:40～16:10 陽電子消滅法の基礎とパルスプローブ技術の有効利用を期待
（千葉大学：藤浪真紀）

16:10～16:40 原子空孔を用いて発光材料への不純物添加効果を探究
（山形大学：北浦守）
3月29日（水）
(1) 生体分子材料と人工分子材料の境界を探る手法_01
13:00–13:10 挨拶
（東工大：上野隆史）
13:10–13:40 生体の分子機構を利用してつくる機能性材料
（東工大：芹澤 武）
13:40–14:10 金属連結ペプチド鎖が創り出すナノトポロジー
（東工大：澤田知久）
14:20–14:50 de novo 設計構造ペプチドを基盤とした人工イオンチャネルの創出
（理研：新津 藍）
14:50–15:20 無機ナノシートの集合構造制御による機能性ソフトマテリアル
（信州大：佐野航季）

(2) 生体分子材料と情報・理論をつなぐ手法
15:30–15:45 植物の構造と機能に学ぶバイオミメティックス
（秋田県立大：津川 暁）
15:45–16:00 ロボット機構学によるタンパク質の理解
（神奈川工大：有川敬輔）
16:00–17:00 ポスター発表
17:00–18:00 総合討論 01

3月30日（木）
(1) 生体分子材料と人工分子材料の境界を探る手法_02
9:30–9:50 生体材料の自律的合成—静から働の機能へ向けて
（東工大：上野隆史）
9:50–10:20 生体・人工ハイブリッド分子モーターの創出と特性解析
（分子研：飯野亮太）
10:20–10:50 人工的な DNA レール上を走るタンパク質モーターの創出
（情報研：古田健也）
11:00–11:30 動態イメージングで探る生命分子材料と人工分子材料の境界
（名大：内橋貴之）
(2) 生体分子材料と社会をつなぐ将来
11:30–12:00 生体分子材料の社会実装，何をする？何ができる？
——ライフサイエンス・ニューロサイエンスからの示唆——
（東工大：福士珠美）
13:00–13:55 総合討論 02
13:55–14:00 挨拶
（分子研：飯野亮太）
3-2 国際交流と国際共同研究

3-2-1 外国人客員部門等及び国際交流

分子科学研究所では、世界各国から第一線の研究者を招き外国人研究職員として雇用したり、各種の若手研究者育成プログラムを活用し、諸外国から若手の研究者を受け入れて研究活動に参画させるなど、比較的長期間にわたる研究交流を実施している。また、当研究所で開催される国際研究集会等に参加する研究者や、研究現場、施設、設備の視察に訪れる諸外国行政機関関係者等、多くの短期的な訪問も受けて活発な国際交流が行われている。

表1 国際交流協定締結一覧

<table>
<thead>
<tr>
<th>相手方機関名</th>
<th>国名</th>
<th>国際交流協定締結一覧</th>
<th>主な内容</th>
<th>締結年月日</th>
<th>有効期限</th>
</tr>
</thead>
<tbody>
<tr>
<td>フランス国立パリ高等化学学校</td>
<td>フランス</td>
<td>自然科学研究機構分子科学研究所とフランス国立パリ高等化学研究所との分子科学分野における共同研究に関する覚書</td>
<td>情報交流、共同研究、研究交流、会議、シンポジウム、セミナーへの研究者派遣</td>
<td>2019.10.23</td>
<td>2024.10.22</td>
</tr>
<tr>
<td>ベルリン自由大学</td>
<td>ドイツ</td>
<td>自然科学研究機構分子科学研究所とベルリン自由大学の分子科学分野における日独共同研究プロジェクトに関する覚書</td>
<td>放射光施設における分子科学分野の学術推進と共同研究の実施</td>
<td>2019.6.21</td>
<td>2022.6.20</td>
</tr>
<tr>
<td>ベーテー・グリュンベルク研究所</td>
<td>ドイツ</td>
<td>ユーリヒ総合研究機構ベーテー・グリュンベルク研究所と自然科学研究機構分子科学研究所との間の分子・材料科学における共同研究プロジェクトに関する覚書</td>
<td>放射光施設における分子科学分野の学術推進と共同研究の実施</td>
<td>2018.10.1</td>
<td>2023.9.30</td>
</tr>
<tr>
<td>マックス・プランク協会フリッツ・ハーバー研究所（物理化学領域）</td>
<td>ドイツ</td>
<td>分子科学研究所とマックス・プランク協会フリッツ・ハーバー研究所（物理化学領域）との協定</td>
<td>学術交流及び共同研究等の実施</td>
<td>2021.5.10</td>
<td>2024.5.9</td>
</tr>
<tr>
<td>オウル大学</td>
<td>フィンランド</td>
<td>自然科学研究機構分子科学研究所とオウル大学の分子科学分野における共同研究に関する覚書</td>
<td>学術交流及び共同研究等の実施</td>
<td>2021.5.10</td>
<td>2024.5.9</td>
</tr>
<tr>
<td>固体表面物理化学国家重点実験室</td>
<td>中国</td>
<td>自然科学研究機構分子科学研究所と固体表面物理化学国家重点実験室との協定</td>
<td>分子科学の学術推進と共同研究の実施</td>
<td>2019.12.23</td>
<td>2024.12.22</td>
</tr>
<tr>
<td>成均館大学</td>
<td>韓国</td>
<td>自然科学研究機構分子科学研究所と成均館大学化学科との研究に関する覚書</td>
<td>分子科学分野における学術交流及び共同研究等の実施</td>
<td>2018.4.1</td>
<td>2022.3.31</td>
</tr>
<tr>
<td>韓国化学会物理化学ディビジョン</td>
<td>韓国</td>
<td>分子科学研究所と韓国化学会物理化学ディビジョンとの間の分子科学分野における学術交流及び共同研究に関する覚書</td>
<td>分子科学分野の先端的研究者が集まるシンポジウムを定期的に開催し、両国の分子科学の発展に寄与する</td>
<td>2018.10.22</td>
<td>2022.10.21</td>
</tr>
<tr>
<td>中央研究院原子分子物理学会研究所</td>
<td>台湾</td>
<td>自然科学研究機構分子科学研究所と日本中央研究院原子分子物理学会研究所との間の分子科学分野における協力に関する覚書</td>
<td>共同研究（物理関連分子科学、分子、原子との共科学、理論と計算の分子科学）</td>
<td>2020.1.12</td>
<td>2023.1.11</td>
</tr>
<tr>
<td>国立陽明交通大学</td>
<td>台湾</td>
<td>自然科学研究機構分子科学研究所と国立交通大学交通学部との学術交流に関する覚書</td>
<td>学術交流及び共同研究等の実施</td>
<td>2018.6.1</td>
<td>2023.5.31</td>
</tr>
<tr>
<td>タイ国立ナノテクノロジー研究センター</td>
<td>タイ</td>
<td>自然科学研究機構分子科学研究所とタイ国立技術開発庁ナノテクノロジー研究センターとの分子科学分野における共同研究に関する覚書</td>
<td>分子科学分野における学術交流及び共同研究等の実施</td>
<td>2018.10.22</td>
<td>2024.10.22</td>
</tr>
<tr>
<td>インド工科大学カンプール校</td>
<td>インド</td>
<td>自然科学研究機構分子科学研究所とインド工科大学カンプール校との分子科学分野における共同研究に関する覚書</td>
<td>学術交流及び共同研究等の実施</td>
<td>2020.4.1</td>
<td>2024.3.31</td>
</tr>
</tbody>
</table>
表2 外国人研究者数の推移（単位：人）

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第4期</th>
<th>年度</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>外国人研究職員（客員）</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本学術振興会外国人招へい研究者</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本学術振興会外国人特別研究員</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国際協力研究員</td>
<td>長期</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>短期</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>研究会参加者（オンライン参加者含）</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>招へい研究員等</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

国際協力研究員＝短期：施設利用者等（学生含む）、長期：インターンシップ生等

表3 外国人研究者の延べ来所人数の国別内訳推移（単位：人）

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第4期</th>
<th>年度</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>フランス</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドイツ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スウェーデン</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィンランド</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スイス</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中国</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>台湾</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タイ</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>インド</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* その他に含まれる国は、チェコ、カナダ、マレーシア

表4 海外からの研究者（2022年度）（web版は削除）
5. 招へい研究員等

SCHAAL, Maximilian
SILLY, Mathieu
MOUTAKANNI, Alix
RODRIGUEZ, Jan Sebastian Dominic
ESCUSA DOS SANTOS, Luis Filipe
MOHD ARIS, Muhammad Zhafran Bin
BUTTIENS, Thomas
SAISOPA, Thanit
MANSIKKALA, Leo
PATANEN, Minna
MANNA, Sujit
MARTIN, Romain
POITRINAL, Martin
TETTEKPOE, Jean-Samuel
GABRIELA, Schlau-Cohen
MAZUMDAR, Shyamalava
GRAHAM, Fleming
MARTHOURET, Hugo
BARRE, Maxence
DELABRE, Antoine
MANNU, Pandian
PAN, Chien-Lin
ANDERSON, Dana
HUANG, Wun-Cin
ALPERT, Peter
MAHRT, Fabia

インド
Indian Institute of Technology, Kanpur

ドイツ
University Paris Saclay

フランス
University of Gothenburg

タイ
Synchrotron Soleil

フィンランド
Oulu University

スイス
Northwest University, China

台湾
Tamkang University

アメリカ
MIT

Tata Institute of Fundamental Research (TIFR)

フランス
University of California, Berkeley and Lawrence Berkeley National Laboratory

Carnegie Mellon University

University of Warwick

スウェーデン
Ecole Polytechnique

スウェーデン
Ecole Polytechnique

スイス
University of Gothenburg

台湾
Tamkang University

サムライ

共同研究と大学院教育
3-2-2 岡崎コンファレンス
分子科学研究所では、1976年（1975年研究所創設の翌年）より2000年まで全国の分子科学研究者からの申請を受けて小規模国際研究集会「岡崎コンファレンス」を年2～3回、合計65回開催し、それぞれの分野で世界トップクラスの研究者を数名招へいし、情報を相互に交換することによって分子科学研究所における研究活動を核にした当該分野の研究を国際的に最高レベルに高める努力をしてきた。これは大学共同利用機関としての重要な活動であり、予算的にも文部省から特に支えられていた。しかし、1997年以降、COEという考え方の大学共同利用機関以外の国立大学等にも広く適用されるところとなり、大学共同利用機関としての岡崎コンファレンスは、予算的には新しく認定されるようになったCOE各機関がそれぞれ行う独自企画の中規模の国際シンポジウムの予算に切り替わった。一方、法人化後、各法人で小～中規模の国際研究集会が独自の判断で開催できるようになり、分子科学研究所が属する自然科学研究機構や総合研究大学院大学でその枠が整備されつつある。ただし、所属している複数の機関がお互い連携して開催するのが主たる目的となっている。

このような背景の下、2006年には全国の分子科学研究者の立案に基づく先導的な中小規模の国際研究会を開催する枠組みを維持継続するために、運営交付金による分子研独自の事業として「岡崎コンファレンス」を再開した。同年の第66回岡崎コンファレンスを開催し2007年以降は研究会の開催提案を広く公募し、全国共同利用による共同研究の一環として継続的に開催してきた。しかしながら2020年以降は世界的コロナ禍のため岡崎コンファレンスとしての国際研究会の提案・採択が無くなったことに伴い、本コンファレンスは2019年の第80回を最後に開催されていない。一方で、2020–2021年度には岡崎コンファレンスの枠組みを別に分子研PIが主導的に開催するwebを利用した几つかの国際研究会や産学連携研究会が開催されており、分子研研究会の新たな可能性を切り拓きつつある。2022年以降はいわゆるwith-/after-coronaの世界において国際研究集会のあり方がも良くても悪くても変わらざるを得ないと考えられ、分子研共同利用においてもweb会議の環境整備・開催支援に注力しつつある。今後は研究会開催形式の変化にも柔軟に対応しwith-/after-coronaにおける「岡崎コンファレンス」を始めとする分子研研究会の有効な実施方法を試行しつつ新たな活性化を目指したい。

3-2-3 日韓共同研究
分子科学研究所と韓国科学技術院（KAIST, Korea Advanced Institute of Science and Technology）の間で、1984年に分子科学分野での共同研究プロジェクトの覚書が交わされ、日韓共同シンポジウムや韓国研究者の分子科学研究所への招聘と研究交流が行われてきた。またこの覚書は2004年から4年ごとに更新を行っている。なお、韓国側の組織体制の都合上、この覚書の中の日韓共同シンポジウムに関しては、2006年に分子科学研究所と韓国化学会物理化学ディビジョン（Physical Chemistry Division, The Korean Chemical Society）との間のものに変更して更新されている。

日韓共同シンポジウムは第1回を1984年5月に分子科学研究所で開催以来、2年ごとに日韓両国間で交互に実施している。これまでの開催履歴は一覧表のとおりである。第11回シンポジウム「分子科学の最前線」（分子科学研
共同研究と大学院教育

究所, 2005年3月)は,文部科学省の「日韓友情年2005 (進もう未来へ, 一緒に世界へ)」記念事業としても認定された。第16回シンポジウムは,当初2015年7月に釜山にて開催予定であったが,時に流行したMERS (中東呼吸器症候群)の懸念により開催が直前に断念され,運営スタッフの交代とともに開催延期となり2017年7月に釜山にてIBS (Institute for Basic Science)特別セッションなどを含めた通例より大規模な会議が開催された。第17回シンポジウム「Advances in Materials and Molecular Sciences」は,2019年7月に名古屋にて,新学術領域研究「光合成分子機構の学理解明と時空間制御による革新的光-物質変換系の創製」との共催で実施された。日本側11件,韓国側12件の講演と19件のポスターセッションがあった。次回第18回は2023年韓国にて開催予定で,今後も日韓両国の研究者による活発な研究・人材交流が進むことが期待される。

開催一覧

<table>
<thead>
<tr>
<th>回</th>
<th>開催年月</th>
<th>主テーマ</th>
<th>開催場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1984年5月</td>
<td>理論化学</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>2</td>
<td>1986年5月</td>
<td>NA</td>
<td>ソウル (韓国)</td>
</tr>
<tr>
<td>3</td>
<td>1988年6月</td>
<td>化学反応</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>4</td>
<td>1991年3月</td>
<td>構造の分子科学</td>
<td>ソウル (韓国)</td>
</tr>
<tr>
<td>5</td>
<td>1993年1月</td>
<td>分子及び分子集合体の動的過程</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>6</td>
<td>1995年2月</td>
<td>Molecular Science on Solid and Solid Surface</td>
<td>テジョン (韓国)</td>
</tr>
<tr>
<td>7</td>
<td>1997年1月</td>
<td>Molecular Spectroscopy of Clusters and Related Compounds</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>8</td>
<td>1999年1月</td>
<td>Molecular Spectroscopy and Theoretical Chemistry</td>
<td>テジョン (韓国)</td>
</tr>
<tr>
<td>9</td>
<td>2001年1月</td>
<td>気相, 構造相および生体系の光化学過程: 実験と理論の協力的展開</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>10</td>
<td>2003年1月</td>
<td>理論化学と計算化学: 分子の構造, 性質, 設計</td>
<td>浦項工科大学 (韓国)</td>
</tr>
<tr>
<td>11</td>
<td>2005年3月</td>
<td>分子科学の最前線</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>12</td>
<td>2007年7月</td>
<td>光分子科学の最前線</td>
<td>津州島 (韓国)</td>
</tr>
<tr>
<td>13</td>
<td>2009年7月</td>
<td>物質分子科学・生命分子科学における化学ダイナミクス</td>
<td>津路島</td>
</tr>
<tr>
<td>14</td>
<td>2011年7月</td>
<td>New Visions for Spectroscopy & Computation: Temporal and Spatial Adventures of Molecular Science</td>
<td>釜山 (韓国)</td>
</tr>
<tr>
<td>15</td>
<td>2013年7月</td>
<td>Hierarchical Structure from Quantum to Functions of Biological System</td>
<td>神戸</td>
</tr>
<tr>
<td>16</td>
<td>2017年7月</td>
<td>Frontiers in Molecular Science: Structure, Dynamics, and Function of Molecules and Complexes</td>
<td>釜山 (韓国)</td>
</tr>
<tr>
<td>17</td>
<td>2019年7月</td>
<td>Advances in Materials and Molecular Sciences</td>
<td>名古屋</td>
</tr>
</tbody>
</table>
3-3 大学院教育

3-3-1 特別共同利用研究員

分子科学研究所は、分子科学に関する研究の中核として、共同利用に供するとともに、研究者の養成についても各大学の要請に応じて、大学院における教育に協力し、学生の研究指導を行っている。また、特別共同利用研究員の受入状況は以下の表で示すとおりであり、研究所のもつ独自の大学院制度（総合研究大学院大学）と調和のとれたものとなっている。

特別共同利用研究員（1991年度までは受託大学院生、1992年度から1996年度までは特別研究学生）受入状況

(2023年3月31日現在)

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第2期</th>
<th>第3期</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td>年度</td>
<td>2010 ～ 2015</td>
<td>2016 ～ 2021</td>
<td>2022</td>
</tr>
<tr>
<td>北海道大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>室蘭工業大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東北大学</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山形大学</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>茨城大学</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筑波大学</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>宇都宮大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>千葉大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>埼玉大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>千葉大学</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>東京大学</td>
<td>5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>東京工業大学</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>お茶の水女子大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>横浜国立大学</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>金沢大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>新潟大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>福井大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>信州大学</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>岐阜大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>静岡大学</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>名古屋大学</td>
<td>59</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>愛知教育大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>名古屋工業大学</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>豊橋技術科学大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三重大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>京都大学</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>京都工芸繊維大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大阪大学</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>神戸大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>奈良教育大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>奈良女子大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>島根大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡山大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>広島大学</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>山口大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>香川大学</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3-3-2 総合研究大学院大学二専攻

総合研究大学院大学は、1988年10月1日に発足した。分子科学研究所は、同大学院大学に参加し、構造分子科学専攻及び機能分子科学専攻を受け持ち、1991年3月には6名の第一回博士課程後期修了者を誕生させた。なお、所属研究科は2004年4月より数物科学研究科から物理科学研究科に再編された。

その専攻の概要は次のとおりである。

<table>
<thead>
<tr>
<th>学校名</th>
<th>3月</th>
<th>2月</th>
<th>1月</th>
</tr>
</thead>
<tbody>
<tr>
<td>名古屋市立大学</td>
<td>14</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>大阪市立大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大阪府立大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>姫路工業大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>学習院大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>北里大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>慶應義塾大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上智大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>立教大学</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中央大学</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東海大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京理科大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東邦大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>星薬科大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>早稲田大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>明治大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>名城大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中部大学</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡山理科大学</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>海外機関</td>
<td>28</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>計</td>
<td>151</td>
<td>132</td>
<td>16</td>
</tr>
</tbody>
</table>
構造分子科学専攻

詳細な構造解析から導かれる分子および分子集合体の実像から物質の静的・動的性質を明らかにすることを目的として教育・研究を一体的に行う。従来の分光学的および理論的構造解析法に加え、新しい動的構造の検出法や解析法を用いる総合的構造分子科学の教育・研究指導を積極的に推進する。

機能分子科学専攻

物質の持つ多種多様な機能に関して、主として原子・分子のレベルでその発現機構を明らかにし、さらに分子及び分子集合体の新しい機能の設計、創製を行うことを目的として教育・研究を一体的に行う。新規な機能測定法や理論的解析法の開発を含む機能分子科学の教育・研究指導を積極的に推進する。

大学開設以来の分子科学２専攻の入学者数、学位取得状況及び各年度における入学者の出身大学の分布等を以下に示す。

<table>
<thead>
<tr>
<th>担当教員と在籍学生数</th>
<th>単位：人</th>
<th>(2022年5月1日現在)</th>
</tr>
</thead>
<tbody>
<tr>
<td>専攻</td>
<td>構造分子科学</td>
<td>機能分子科学</td>
</tr>
<tr>
<td>担当教員</td>
<td></td>
<td></td>
</tr>
<tr>
<td>教授</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>准教授</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>助教</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>計</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>学生数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>入学年度</td>
<td>5年一貫〈定員2〉</td>
<td>博士後期〈定員3〉</td>
</tr>
<tr>
<td>2022</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2021</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>5(2)</td>
</tr>
<tr>
<td>2019</td>
<td>1(1)</td>
<td>1</td>
</tr>
<tr>
<td>2018</td>
<td>3 (1)</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>計</td>
<td>7(1)</td>
<td>11(2)</td>
</tr>
</tbody>
</table>

()は留学生数で内数。
フランス1名, ドイツ1名, エルサルバドル1名, 中国3名, タイ1名, インド2名, 二専攻合計で9名。
入学と学位取得の状況 単位：人 （2023年3月31日現在）

<table>
<thead>
<tr>
<th>区分</th>
<th>専攻</th>
<th>中期計画区分</th>
<th>第2期</th>
<th>第3期</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>年度</td>
<td>2010～2015</td>
<td>2016～2021</td>
<td>2022</td>
</tr>
<tr>
<td>入学者数</td>
<td>構造分子科学</td>
<td>五年一贯</td>
<td>15</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>博士後期</td>
<td>20</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>機能分子科学</td>
<td>五年一贯</td>
<td>10</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>博士後期</td>
<td>18</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td></td>
<td>63</td>
<td>70</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>区分</th>
<th>専攻</th>
<th>年度</th>
<th>2010～2015</th>
<th>2016～2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位 取得者数</td>
<td>構造分子科学</td>
<td>課程博士</td>
<td>20</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>論文博士</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>機能分子科学</td>
<td>課程博士</td>
<td>19</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>論文博士</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td></td>
<td>42</td>
<td>39</td>
<td>9</td>
</tr>
</tbody>
</table>

外国人留学生数（国別入学者数） 単位：人 （2023年3月31日現在）

<table>
<thead>
<tr>
<th>中期計画区分</th>
<th>第2期</th>
<th>第3期</th>
<th>第4期</th>
</tr>
</thead>
<tbody>
<tr>
<td>年度</td>
<td>2010～2015</td>
<td>2016～2021</td>
<td>2022</td>
</tr>
<tr>
<td>フランス</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドイツ</td>
<td>1, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ロシア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>チェコ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カナダ</td>
<td>1, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>エルサルバドル</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中 国</td>
<td>14, 5</td>
<td>0, 5</td>
<td></td>
</tr>
<tr>
<td>韓 国</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タイ</td>
<td>2, 3</td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>インド</td>
<td>0, 2</td>
<td>0, 3</td>
<td></td>
</tr>
<tr>
<td>パングラディッシュ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パキスタン</td>
<td>1, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネパール</td>
<td>0, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マレーシア</td>
<td>1, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベトナム</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィリピン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エジプト</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナイジェリア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>17, 13</td>
<td>4, 15</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

構造分子科学専攻（A）と機能分子科学専攻（B）の入学者数をA, Bで示す
<table>
<thead>
<tr>
<th>専攻</th>
<th>構造分子科学</th>
<th></th>
<th>機能分子科学</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中期計画区分</td>
<td>第2期</td>
<td>第3期</td>
<td>第4期</td>
</tr>
<tr>
<td>北海道大学</td>
<td>3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東北大学</td>
<td>1</td>
<td>1(1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>山形大学</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筑波大学</td>
<td></td>
<td></td>
<td>1(1)</td>
<td></td>
</tr>
<tr>
<td>千葉大学</td>
<td>1(1)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>東京農工大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京工業大学</td>
<td>3(3)</td>
<td></td>
<td></td>
<td>1(1)</td>
</tr>
<tr>
<td>新潟大学</td>
<td></td>
<td></td>
<td></td>
<td>1(1)</td>
</tr>
<tr>
<td>長岡技術科学大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金沢大学</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山梨大学</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>信州大学</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>早稲田大学</td>
<td></td>
<td></td>
<td>1(1)</td>
<td>1</td>
</tr>
<tr>
<td>名古屋大学</td>
<td>3(3)</td>
<td>6(5)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>愛知教育大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>名古屋工業大学</td>
<td></td>
<td></td>
<td></td>
<td>2(2)</td>
</tr>
<tr>
<td>豊橋技術科学大学</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>京都大学</td>
<td>3</td>
<td>2(1)</td>
<td>1</td>
<td>2(1)</td>
</tr>
<tr>
<td>大阪大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>齊大大学</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>鳥取大学</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡山大学</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>広島大学</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>鳥取大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>九州大学</td>
<td>1(1)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>熊本大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鹿児島工業高等専門学校</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>奈良工業高等専門学校</td>
<td>1(1)</td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>宇部工業高等専門学校</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>北九州工業高等専門学校</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>名古屋市立大学</td>
<td>1</td>
<td>3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大阪府立大学</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>兵庫県立大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>いわき明星大学</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>城西大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北里大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東海大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京電機大学</td>
<td></td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京理科大学</td>
<td>1(1)</td>
<td>1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東邦大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本大学</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>法政大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>立教大学</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>神奈川大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>愛知工業大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大学名</td>
<td>1(1)</td>
<td>1</td>
<td>2(1)</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>立命館大学</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関西大学</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>近畿大学</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>福岡大学</td>
<td>1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>海外機関・その他</td>
<td>17(2)</td>
<td>4(1)</td>
<td>12(3)</td>
<td>11(3)</td>
</tr>
<tr>
<td>合計</td>
<td>35(15)</td>
<td>33(21)</td>
<td>6(2)</td>
<td>28(10)</td>
</tr>
</tbody>
</table>

()は5年一貫で内数。
第1期（2009年度）以前の入学者があった大学を以下に示す。
東京大学（16名）。北海先端科学技術大学院大学、早稲田大学（7名）。学習院大学、慶應義塾大学（6名）。お茶の水女子大学（5名）。愛媛大学（4名）。電気通信大学、静岡大学、東京都立大学（3名）。室蘭工業大学、筑波大学。
京都工芸繊維大学、山口大学、鹿児島大学、大阪市立大学、情報工業大学、中央大学、岡山理科大学（2名）。群馬大学、横浜国立大学、富山大学、福井大学、三重大学、奈良女子大学、佐賀大学、琉球大学、奈良先端科学技術大学院大学、石巻専修大学、青山学院大学、国際基督教大学、明星大学、龍谷大学、甲南大学、放送大学（1名）。

修了生の進路 単位:人
(2022年12月現在)

<table>
<thead>
<tr>
<th>修了直後</th>
<th>2010～2021年度修了生の進路状況</th>
<th>1991～2021年度修了生の現在の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>専攻</td>
<td>構造分子科学</td>
<td>機能分子科学</td>
</tr>
<tr>
<td>教授</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>准教授</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>講師</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>助教</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>研究職</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>小計</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>進学</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>民間企業（研究職含む）</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>その他</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>合計</td>
<td>40</td>
<td>32</td>
</tr>
</tbody>
</table>

修了直後は1年以内の就職・進学先等。
各項目には海外の機関・団体等を含む。

3-3-3 オープンキャンパス
2022年6月4日（土）、zoomを使ったオンライン形式で分子研オープンキャンパスを開催した。COVID-19の影響で2020年度からオンラインで行っていた。今年度は現地発表も不可能ではない社会情勢であったものの、オンライン化によって入学を検討する参加者の割合が増えたこと、全国どこからでも参加できるメリットが大きいことから、今年もオンラインとした。
まずは周知が必要と考え、分子研twiterの活用や所長へのretweetのお願い、ポータルサイト（chem-station.com、tayo.jp）への出稿を通じて広報活動を1ヶ月間行った。結果として、北は北大から南は九大まで、過去2年間を上回る34名の参加登録があった。
当日は午前10時に開始し、所長と大学院委員長による分子研・総研大の説明のち研究室紹介を各5分で行った。事前に撮影したもの5分動画の提出も可とし、リアルタイムでの説明が多く、ライブ感のある研究室紹介となった。
午後はブレイクアウトルームを利用したラボツアーを行った。前回参加者の「質問時間がもっと足りなかった」との意見を参考に、5研究室並列の3回制（1研究室50分）、かつ希望する学生がいれば追加対応可とした。「ブレイクアウトルーム内ではカメラ ON」をお願いしたこともあり、実際に研究室見学に来たような臨場感を出すことができた。説明時間後は質問をしていた学生が見受けられたので、目当ての研究室が明確にある学生にとっては良かった。一方で、登録時の「興味のある研究室」で分野をまたがって多数選択する学生が予想よりも多かったため、最大3研究室にしか参加できない今回の形式には改善の余地があるうつ。

オープンキャンパス参加者のうち見学・体験入学申込者は6名であった。見学をもっと気軽にできるように、日程と行程が決まったラボツアーをあらかじめ設定しておくなど、今後さらに検討する余地はあるかと思われる。また、入学の検討を始めるには6月開催が遅いため、開催を早める、効果的なPRを行う、参加者が総研大在学生の話を聞く場を設けるなど、今後改善していきたい。

3-3-4 体験入学

本事業は、他大学の学部学生・大学院生に対して、実際の研究室での体験学習を通じて、分子科学研究所（総研大物理科学研究科構造分子科学専攻・機能分子科学専攻）における研究環境や設備、大学院教育、研究者養成、共同利用研究などを周知するとともに、分子研究や総研大への理解促進を目的としている。本事業は、総研大本部から「新入生確保のための広報事業」として例年、特定教育研究经费の予算補助を受けており、総研大物理科学研究科の主催行事として2004年より毎年開催している。本年度も昨年度と同様、新型コロナウイルス感染拡大に伴い、例年8月の第2週に受け入れてきた体験入学を中止し、感染者数が落ち着いている時期に、各研究室個別に見学者や体験入学者を受け入れる対応をとった（受入時期と感染対策は岡崎三機関の規則に従った）。選考の結果、本年度は28名の学生（学部学生22名、大学院生5名、社会人1名）を受け入れ、うち4名については2回受け入れた。実施スケジュールは以下のとおりである。

<table>
<thead>
<tr>
<th>所属</th>
<th>身分</th>
<th>訪問先</th>
<th>受入期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(公財)相模中央化学研究所</td>
<td>社会人</td>
<td>古賀 G</td>
</tr>
<tr>
<td>2</td>
<td>東京理科大学</td>
<td>学部生</td>
<td>杉本 G</td>
</tr>
<tr>
<td>3</td>
<td>慶應義塾大学</td>
<td>大学院生</td>
<td>熊谷 G・杉本 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>杉本 G</td>
</tr>
<tr>
<td>4</td>
<td>九州大学</td>
<td>学部生</td>
<td>奥村 G・魚住 G</td>
</tr>
<tr>
<td>5</td>
<td>立命館大学</td>
<td>学部生</td>
<td>倉持 G・草本 G</td>
</tr>
<tr>
<td>6</td>
<td>東北大学</td>
<td>学部生</td>
<td>杉本 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>杉本 G</td>
</tr>
<tr>
<td>7</td>
<td>東京大学</td>
<td>学部生</td>
<td>杉本 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>奥村 G・秋山 G</td>
</tr>
<tr>
<td>8</td>
<td>信州大学</td>
<td>学部生</td>
<td>杉本 G</td>
</tr>
</tbody>
</table>

6月4日（土）：分子研オープンキャンパス大学院説明会・体験入学説明会（オンライン開催）
1月6日（金）：体験入学 WEB説明会

参加者の内訳、受入研究室、受入期間は以下の通りである。
総研大アジア冬の学校

総研大「アジア冬の学校」が、2022年12月21日（水）に分子科学研究所研究棟2階において開催された。アジア冬の学校は、物理科学研究科内の5専攻で行っている研究・教育活動をアジア諸国の大学院生及び若手研究者の育成に広く供するために2004年度に始まった。新型コロナウィルス感染拡大の影響により、2020年と2021年は開催が中止されたため、3年ぶりの開催となった。アジア全域から参加者を募り、今年度はインターンシップ生（IIPA：分子研アジア国際インターンシッププログラム）4名、マレーシアのマラヤ大学から2名、総研大学13名、広島大学1名、講演者2名、若手研究者を含めた教職員5名の計27名で実施された。今年度のテーマは、昨年度に引き続き「Challenges for New Frontiers in Molecular Science: From Basic to Advanced Researches」とし、参加者によるフラッシュトークおよびポスター発表、斉藤真司教授と熊谷崇准教授による講義が行われた。講義やポスター発表、休憩時間においても活発な議論が行われ、インターンシップ生や総研大学、参加者にとって有意義な国際交流の場になったと思われる。

SAITO, Shinji (IMS, SOKENDAI)
“Dynamics in Condensed Phase Systems: Basic Concepts and Applications”
KUMAGAI, Takashi (IMS, SOKENDAI)
“Physical Chemistry at the Bottom: Real-Space Study of Hydrgen-Bond Dynamics”
3-3-6 統合生命科学教育コース群
総研大では、2019年度より総合的な教育の視点から、研究領域に関連する問題や課題に応じて、各研究科・専攻が開設する授業科目群をグループとしてまとめ、狭義の専門分野を超えて広く本学の学生に履修を促す「コース群」を設置している。
「統合生命科学教育コース群」としては、これからの生物学に寄与することの出来る研究者を育成するために、生物学のみならず、物理科学、数理科学、情報科学などに通じる学際的かつ統合的な生命観を育てることを目的とする授業科目群を提供している。
講義は原則英語で行われ、Zoom（Web会議システム）を利用して現地、遠隔地専攻に差がなく受講できるようにしている。本年度は、8科目（①統合生命科学入門、②イメージング科学、③発生生物学 II、④進化ゲノム生物学、⑤遺伝学、⑥生体分子シミュレーション入門（中止）、⑦機能発生生物学 IV、⑧統合進化学）が実施された。②イメージング科学はPC演習が含まれるため、対面のみでの実施を計画していたが、新型コロナウイルス感染症拡大の影響により2名が急遽Zoomでの参加となった。前日での決定となったが、講師の尽力によりハイブリッドでの演習を実施することができた。
2023年4月より、現在の6研究科から、先端学術院のもとに20コースを設置する体制へ移行するため、「統合生命科学教育コース群」はその役目を終えることが決定している。一部は科目として存続するため、これからも学生の学びの一助となることを期待したい。
3-4 その他

3-4-1 分子研コロキウム

分子研コロキウムは、所長はもとより、所内全ての教授、准教授、研究者を集い、各人の専門分野で講師をお招きして開催する部門公開セミナーの一例を画す。今年度965回を数える歴史あるセミナーであるが、近年、コロキウムに参加する所員は減少する一途にあり、コロキウム本来の趣旨が所員に正しく理解されているかは疑わしい状況にあった。1988年「総合研究大学院大学」の設立、2003年「国立大学法人法」の制定にともない、所長、教授、准教授が、研究所・大学院の運営により多くの時間を割かざるを得なくなるなど、コロキウムが始まった1976年当時と現在との間では大きく異なった事実があるが、コロキウム本来の趣旨に立ち返り、その存在意義を高めるべく、2010年度からコロキウムの改革が進められている。

現行の開催要領では、(i)各領域による講師の推薦と、(ii)ホスト（各教員）による講師の推薦に基づき、(iii)4月から翌年3月まで通年開催する、という3点を骨子としている。佐藤の選出に複数の教員が関わることで所全体としてコロキウムへの関心を高めつつ、分子科学に関連する各研究分野のトップランナーである研究者をお招きし、最先端の話題を提供していただくことが主な狙いである。また、(iii)はコロキウムの開催が年末から年度末にかけて集中してしまうここ数年の傾向を考慮しての対策である。これらの開催方針は次年度にも引き継がれることになった。

上記開催要領に基づき、2022年度は計10件のコロキウムを開催し、8件を対面形式で（うち1件はオンラインを併用したハイブリッド形式）、他2件をオンライン形式で行った。前年度は新型コロナウイルス感染症の拡大により全てのコロキウムがオンラインで開催されるなど、対面形式でのコロキウム開催は久々であった。しかしながら、いずれの回も多くの聴講者が集まり活発な議論が行われるなど盛況で、対面形式による議論の良い面をあらためて認識した。また、コロナ禍対策として整備されたオンライン開催のための設備・技術を活用し、より多くの聴講者に参加していただけるように、オランダ・フィンランド形式での開催および所内外への公開が検討・実施された。感染状況が一定の程度に収まってきていることから次年度のコロキウムも主に対面形式で開催される予定であるが、開催形式にこれらの新しい選択肢が加わったことで、今後のコロキウムが講演者と所内外の研究者を広く巻き込んだ、より活発な「ブレーンストーミング」の場となることが期待される。

以下に、2022年度に行われた分子研コロキウム一覧を示す。

<table>
<thead>
<tr>
<th>回</th>
<th>開催日</th>
<th>テーマ</th>
<th>講演者</th>
</tr>
</thead>
<tbody>
<tr>
<td>956</td>
<td>2022. 6.28</td>
<td>Quantum Technology at 100 Billionths of a Degree Above Absolute Zero</td>
<td>Prof. Dana Anderson (JILA fellow/UC Boulder)</td>
</tr>
<tr>
<td>957</td>
<td>2022. 7.12</td>
<td>金属-有機構造体（MOF）の融解とガラス化、およびその機能</td>
<td>堀毛 悟史（京都大学准教授）</td>
</tr>
<tr>
<td>958</td>
<td>2022. 8.1 (オンライン)</td>
<td>Dynamic and Thermodynamic Performance Bounds for Collective Motor-Driven Transport</td>
<td>Prof. David Sivak (Simon Fraser Univ., Canada)</td>
</tr>
<tr>
<td>959</td>
<td>2022. 8.2 (オンライン)</td>
<td>臨界現象とスケーリング：切り紙の伸長から滴の融合・分離まで</td>
<td>奥村 剛（お茶の水女子大学教授）</td>
</tr>
<tr>
<td>960</td>
<td>2023. 1.13</td>
<td>エネルギー応答型精密Ir錯体触媒が拓くバイオマス資源とCO2の還元</td>
<td>東野 進（名古屋大学教授）</td>
</tr>
<tr>
<td>961</td>
<td>2023. 2.10</td>
<td>固体の真空状態を破壊する——固体の高次高調波発生の物理</td>
<td>田中耕一郎（京都大学教授）</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Title</td>
<td>Speaker</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>962</td>
<td>2023. 2.13</td>
<td>The Business of Quantum Computing: Market Dynamics, Funding and Future Prospects</td>
<td>Mr. Paul Lipman (ColdQuanta, Inc.)</td>
</tr>
<tr>
<td>963</td>
<td>2023. 3.7</td>
<td>Giving Chemistry Direction</td>
<td>Prof. David A. Leigh (The University of Manchester, UK)</td>
</tr>
<tr>
<td>964</td>
<td>2023. 3.20</td>
<td>Organic Semiconductors—from Flexible Displays and Solar Cells to the Artificial Brain</td>
<td>Prof. Karl Leo (Technische Universität Dresden, Germany)</td>
</tr>
<tr>
<td>965</td>
<td>2023. 3.22</td>
<td>Does an Isolated Quantum Spin System Thermalize?</td>
<td>Prof. Matthias Weidemüller (Ruprecht-Karl University Heidelberg, Germany)</td>
</tr>
</tbody>
</table>
4. 研究支援等

ここに記載しているのは、直接研究活動を行わないが研究を遂行する上でなくてはならない研究支援業務であり、主に技術職員が担当・支援しているものである。特に法人となってからは、全国の分子科学コミュニティの連帯強めるために研究支援部門を強化してきた。法人化後に新設された部門には、「安全衛生管理室」、「広報室」、「史料編纂室」があり、引き続き活発な活動を行っている。また、2013年度から自然科学研究機構は「研究大学強化促進事業」の支援対象機関となり、分子研もこの事業の一環で「研究力強化戦略室」が設置され、広報室と史料編纂室は研究力強化戦略室に発展的に含まれることになった。2021年度より、技術課は技術推進部に改組されたが、引き続き技術推進部と戦略室が連携して研究支援業務を進めている。

技術推進部は、研究支援組織の中核になる大きな集団を構成している。分子科学研究所では、法人化後、技術職員を公募で選考採用したり、研究室配属の技術職員を研究施設に配置転換したりすることによって、大型の研究施設を維持管理する部門や共同利用を直接支援する部門を増強した。2007年度に組織編成を大きく見直したが、新しい研究センターの設置や研究所の構想により即した体制を整えるため、2013年7月に7技術班を6技術班に再編し一部の人員配置換えも行った。更に、2021年度より技術推進部に改組し、スタッフ制による所長直属の技術者組織として、各附属施設をユニット化した上で、マネジメント役のユニット長を配置している。これにより、個々人のもと高い専門的技術をより効率的に発揮し、研究者が研究に専念できるように技術支援の体制を構築している（「2-8構成員」を参照）。

安全衛生管理室は、法人化に伴い、研究所の総括的な安全衛生が労働安全衛生法という強制力を持つ法律によって規制されるようになったため、その法律の意図するところを積極的かつ効率的に推進するために設置された。それまでは、設備・節約・安全委員会という意思決定のための委員会が存在していたが、安全衛生の実際の執行は技術課が一部を担当したものの、専門に執行する組織はなかった。現在、安全衛生管理室には、専任の特任研究員と助手、十名弱の併任の職員を配置し、執行組織として多くの施策を実行している。部分的に、2002年3月に廃止した研究施設の「化学試料室」の機能も有している。担当職員は安全衛生を維持するのに必要な資格を全て取得し任務にあたっている。

広報室は、法人化と共に設置した部門であり、研究活動報告や要覧誌の発行などに留まらず、国民により積極的に研究所で行っている研究内容を分かりやすく紹介することに重点を置き様々な活動を行ってきた。例えば分子研における研究トピックスの発信やプレスリリース、分子研ウェブサイトの整備、事業内容を紹介する動画の制作や展示室を見学者に公開するなど、研究所のアウトリーチ活動全般を担っている。これらの活動を研究力強化の立場から見直すことも含めて、研究力強化戦略室として一体的な活動を進めている。

史料編纂室は、法人化後に設置された支援組織としては一番新しい。法人化後まもなく迎えた創立30周年記念行事の中で分子研設立の経緯を残すことの重要性が認識された。このため、総研大平山高等研究センターを中心に発足した「大学共同利用機関の歴史」研究プロジェクトに参加する形で史料編纂室を発足させた。分子研設立の経緯と共に、過去に所員が行ってきた研究、分子科学コミュニティの形成過程などの歴史を整理・記録してきた。広報資料や研究活動等評価資料（IR資料）という観点で、研究力強化戦略室の中に位置付けられている。
4-1 技術推進部

分子科学研究所技術課は、2021年4月1日より、技術推進部に改組された。1975年の研究所設立と同時に、技術分野での研究支援を目的として、文部省教室系技官が全国で初めて組織化された分子研技術課であるが、時代と共に、高い専門性を持つ職員が増えてきたことに伴い、事務組織と同じライン制での組織運営が難を伴っていた。そこで、スタッフ制による所長直属の技術者組織に改組し、各附属施設をユニット化した上で、マネジメント役のユニット長を配置することにより、各個のもつ高い専門的技術をより効率的に発揮し、研究者が研究しやすい環境を整備すると共に、研究に専念できるように技術支援する体制を構築し、再出発することとなった。

技術推進部は、以前の技術課と同様に所長直属の組織であり、技術職員を統轄する技術推進部長の下、光技術ユニット、装置開発ユニット、計算情報ユニット、機器分析ユニットの4つのユニット、及び学術支援担当職員により構成される。構成員は2022年4月1日現在で34名である。技術職員は、主に研究施設に配属され、それぞれの持ち高い専門技術で研究教育職員と協力し、先端的かつ独創的な研究を技術面から支え、大学共同利用機関の使命を果たすために努力している。各施設に配属された技術職員の対応する技術分野は広範囲にわたっている。機械、電気、電子、光学、情報、といった工学知識や各要素技術の技能を基に支援業務として実験機器の開発、システム開発等を行い、物理、化学、生命科学を基に物質の構造解析や化学分析等を支援している。この様に技術職員の持っているスキルを活用し、UVSORやエネルギー、レーザー、SQUID、NMRなど大型設備から汎用機器の維持管理、施設の管理・運用に至るまで技術職員の役割としている。さらに、科学の知識を基に研究所のアウトリーチ活動も職務として担い、広報に関する業務、出版物の作成等も行っている。所内の共通業務としてネットワークの管理・運用、安全衛生管理も技術推進部の業務として行っている。安全衛生管理では、研究の性質から毒物・劇物・危険物など薬品管理や低温寒剤等高圧ガスの知識、放射線管理、その他技術的な側面から毎週職場巡視を行い、分子研の安全衛生管理に寄与している。

技術職員が組織化されたのは、1975年に創設された分子科学研究所技術課が日本で最初である。技術職員が組織化されたことで直接待遇改善につながったが、組織化の効果はそれだけでなく、施設や研究室の狭い枠に留まっていた支援を広く分子科学分野全体の研究に対して行うことができるようになり、強力な研究支援体制ができあがった。支援体制の横のつながりを利用し、岡崎3機関の岡崎統合事務センターと技術推進部が協力して最良の研究環境を研究者に提供することを目指に業務を推進している。しかし、事務組織とは違って分子研の技術職員は流動性に乏しいので、組織と個人の活性化を図るために積極的に次のような事項を推進している。
4-1-1 技術研究会

施設系技術職員が他の大学、研究所の技術職員と技術的交流を行うことにより、技術職員相互の技術向上に繋がることを期待し、1975年度、分子研技術課が他の大学、研究所の技術職員を招き、第1回技術研究会を開催した。内容は日常業務の中で生じたいろいろな技術的問題や失敗、仕事の成果を発表し、互いに意見交換を行うものである。その後、毎年分子研でこの研究会を開催してきたが、参加機関が全国的規模に広がり、参加人員も300人を超えるようになった。そこで、1982年度より同じ大学共同利用機関の高エネルギー物理学研究所(現、高エネルギー加速器研究機構)、名古屋大学プラズマ研究所(現、核融合科学研究所)で持ち回り開催を始めた。その後さらに全国の大学及び研究機関に所属する技官(現、技術職員)に呼びかけ新たな技術分野として機器分析技術研究会も発足させた。現在ではさらに多くの分科会で構成された総合技術研究会が大学で開催され、さらなる発展を遂げつつある。表1に技術研究会開催機関及び経緯を示す。

表1 技術研究会開催機関（中期計画第4期）

<table>
<thead>
<tr>
<th>年度</th>
<th>開催機関</th>
<th>開催日</th>
<th>分科会</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>大阪大学</td>
<td>2022年9月1-2日</td>
<td>電子顕微鏡、磁気共鳴、X線構造解析、質量分析、有機微元素分析、分光分析、熱分析、XPS等、安全衛生関係</td>
<td>ハイブリッド開催</td>
</tr>
<tr>
<td></td>
<td>広島大学</td>
<td>2021年3月2-3日</td>
<td>情報・電気系、機械系、建築・土木・農学・水産学系、化学・医学・理学系、地域貢献、安全衛生</td>
<td>オンライン開催</td>
</tr>
<tr>
<td></td>
<td>分子科学研究所</td>
<td>2021年3月10-11日</td>
<td>装置運用、計測・制御、極低温、工作技術、情報ネットワーク</td>
<td>オンライン開催</td>
</tr>
</tbody>
</table>

4-1-2 技術研修

1995年度より、施設に配属されている技術職員を対象として、他研究所・大学の技術職員を一定期間、分子研の附属施設に受け入れ技術研修を行っている。分子研のような大学共同利用機関では、研究者同士の交流が日常的に行われているが、技術者同士の交流はほとんどなかった。他機関の技術職員と交流が行われれば、組織の活性化、技術の向上が図れるであろうという目的で始めた。この研修は派遣側、受け入れ側ともに好評だった。そこで、一歩進めて、他研究機関に働きかけ、受け入れ研修体制を作っていた。そうした働きかけの結果、1996年度より国立天文台が実施し、1997年度には高エネルギー加速器研究機構、1998年度からは核融合科学研究所が受け入れを開始し現在も続いている。法人化後は、受け入れ側の負担や新しい技術の獲得には大きく寄与していないため、実施件数は少なくなってきている。そこで、2007年度からセミナー形式で外部より講師を招き、併せて他機関の技術職員も交えて「技術課セミナー」を行ってきた。技術推進部に改組後も、様々な技術分野のトピックを中心に開催する予定である。また、従来の受け入れ研修も小規模ながら続けている。なお、2020年度は新型コロナウイルス感染症の感染拡大の影響により実施できなかった。

表2に分子研での受け入れ状況を示す。

表2 技術研修受入状況（中期計画第4期）

<table>
<thead>
<tr>
<th>年度</th>
<th>受入人数（延）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>3</td>
</tr>
</tbody>
</table>

研究支援等 77
表 3 2022年度技術研修受入状況（2022.4.1 ～ 2023.3.31）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>受入期間</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>千葉 淳</td>
<td>岩手大学</td>
<td>2023.3.16 ～ 3.17</td>
<td>電子回路技術研修</td>
</tr>
<tr>
<td>庄司 愛子</td>
<td>岩手大学</td>
<td>2023.3.16 ～ 3.17</td>
<td>電子回路技術研修</td>
</tr>
<tr>
<td>河尻 直幸</td>
<td>鳥取大学</td>
<td>2023.3.16 ～ 3.17</td>
<td>電子回路技術研修</td>
</tr>
</tbody>
</table>

4-1-3 人 事
技術職員人事は、法人化されてからは、広く人材を確保するために、国立大学法人等採用試験や公募採用も取り入れ、即戦力、より高度な専門技術を持つ人材の採用を行ってきた。また、職員採用については技術職員の年齢構成も考慮しているが、現職の職員の年齢構成は、やや団塊となる世代がベテラン層に見られ、ライン制の組織構造で起こる人材登用問題も深刻になりつつある。これらを踏まえスタッフ制に改組した。技術職員は教員と違って人事の流動性はほとんどないため、長期に同一職場に勤務すると、職務に対する意識が慢性化し活力が低下しがちである。従って人事の流動は、組織と個人の活性化に重要な施策として不可欠である。その対策として法人化前は一定の期間、所属を移して勤務する人事交流を行ってきた。しかし、法人化後は、交流先の機関での人材確保や技術分野の一致が見られず、実施されていない状況である。現在、全国の技術職員ネットワークを通じて、新たな人事交流の可能性を模索している。

4-1-4 受 賞
高度で専門的な技術支援業務を通じて、分子科学研究の発展や研究成果の創出に顕著な貢献を行った技術職員に対して、その功績を讃えるために、日本化学会始めとする学協会等が表彰制度を創設している。分子研創設以来の技術職員の受賞は、日本化学会化学技術有功賞 15件、低温工学協会功労賞 1件、日本放射光学会労働賞 1件、ナノテクノロジープラットフォーム技術支援貢献賞 1件、文部科学大臣表彰研究支援賞1件である。今年度の受賞は以下の通りである。

中村永研 日本放射光学会労働賞（2023）
4-2 安全衛生管理室

安全衛生管理室は、研究所における快適な職場環境の実現と労働条件の改善を通じて、職場における職員の安全と健康を確保するための専門業務を行うことを目的として、2004年4月に設置された。安全衛生管理室には、室長、専任及び併任の安全衛生管理者、安全衛生管理担当者、化学物質・放射線・高圧ガス・電気・レーザーなどのそれぞれの分野を担当する作業主任者が置かれている。安全衛生管理者は、少なくとも毎週1回明大寺・山手両地区を巡視し、設備、作業方法又は衛生状態に危険及び有害のおそれがあるときは、直ちに、職員の健康障害を防止するための必要な措置を講じている。また、職場の安全衛生を推進するために必要な、作業環境測定（必要に応じ外部に委託）や、保護具、各種の計測機器、文献・資料、各種情報の集中管理を行い、分子研における安全衛生管理の中心としての活動を行っている。

また安全衛生管理室では、分子科学研究所全職員に対する安全衛生教育も行っており、そのための資料作成、各種資格取得の促進、専門家の養成などを行っている。雇い入れ時の安全衛生教育は年度初旬に定例として行うほか、講習テキストと講習会DVDを用意し、年度途中の採用者に対しても、随時安全衛生教育が可能となるよう配慮している。また長期滞在する外国人研究者に対しては、英文の安全衛生講習会テキストならびに英語版講習会DVDを作成し、これらの教材を用いた安全衛生教育を行っている。安全衛生に必要な情報は、安全衛生管理室のWEBページ（http://info.ims.ac.jp/safety/）にまとめて掲載しており、必要な規則や書式に即座にアクセス可能である。また、安全衛生管理室員全員のメールアドレスが登録されたメーリングリスト（safety@ims.ac.jp）も設定しており、各種の質問などに機能的に対応できる体制になっている。年に数回、分子研安全衛生委員会（岡崎3機関の「安全衛生委員会」に相当）と合同で連絡会議を開催し、所内の安全衛生状況に関する情報交換、連絡の徹底等が円滑に行なわれる体制を採っている。

今年度も、「安全講習」と「安全巡視」は岡崎3機関等で策定されたコロナ対策活動指針に基づいて実施した。入構者の防疫管理手順については、技術推進部、共同利用推進室、および所内受付チームらと協力してアップデートを続けている。防災対策として、3年ぶりに実動の防災訓練を実施した。自衛消防隊員の主体的な訓練参加を促すため、まず現場の指揮を担当する副班長に担当訓練のシナリオ作成や人員手配等の役割に参画してもらった。
4-3 研究力強化戦略室

研究大学強化促進事業（5-8に記載）においては、各研究機関にリサーチ・アドミニストレーター（University Research Administrator, URA）を置き、研究活動の企画・マネジメント、研究力の強化、また研究成果の活用。そのための広報等を担当することが求められている。自然科学研究機構では、機構本部に研究力強化推進本部を置くほか、各機関に研究力強化戦略室が設置され、それぞれに URA 等のマネジメント人材、支援スタッフを置く形となっている。分子科学研究所の研究力強化戦略室では、室長を研究総主幹が務め、現場の運営を担うスタッフとして、2022年度現在で URA 職員 4 名、助手 1 名、特任及び特命専門員 3 名、事務及び技術支援員 5 名の体制で運用している。また室員として、室長の他に所内教授 4 名と技術推進部長を指名し、随時、研究力の維持・強化に向けた方策に関する議論をする会議の場を設けている。この会議には、所長、及び必要に応じて URA 職員も同席する。また研究力強化戦略室の内部組織として共同利用推進室を設置し機器センターチームリーダーが中心となり、所外の共同利用の推進のための諸業務を担うこととなった。それには、「大学連携研究設備ネットワーク」や「マテリアル先端リサーチインフラ」等の事業に関わる業務も一部含まれる。

研究力強化戦略室が現在になっている主な業務は、評価・IR、企画・概算要求、支援スタッフ等の人事管理、広報・アウトリーチ、国内及び国際共同研究推進、研究者支援、施設管理等があげられる。これらの業務を、必要に応じて各部門や施設、事務センター、機構本部等と連携して進め、研究者と事務組織の間を繋ぐ役割を担っている。
4-4 社会との交流

一般市民の方々に科学の面白さ・意義を伝えるとともに、科学コミュニティの健全な発展を促すような相互交流を醸成するための取り組みは、ますます重要性を増している。分子科学研究所では、このようなアウトリーチ活動の一環として、他機関との連携・共同により国内の広い範囲をカバーする事業、および、岡崎の地域性を重視した事業という2つのタイプを実施している。前者としては、自然科学研究機構シンポジウムならびに大学共同利用機関シンポジウムがあり、後者は一般公開、分子科学フォーラム、岡崎市民大学講座等である。また、全国の中学・高等学校の団体から、個人の申し込みまで、見学者を受け入れている。

4-4-1 一般公開

研究活動や内容について、広く一般の方々に理解を深めていただくため研究所内を公開し、説明を行っている。現在では岡崎市にある3つの研究所が輪番に公開を実施しているので、3年に1回の公開となっている。公開日には実験室の公開と講演会が行われ、多くの見学者が分子研を訪れる。

<table>
<thead>
<tr>
<th>回 数</th>
<th>実施月日</th>
<th>入場者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>第11回</td>
<td>2006.10.21</td>
<td>2058人</td>
</tr>
<tr>
<td>第12回</td>
<td>2009.10.17</td>
<td>1346人</td>
</tr>
<tr>
<td>第13回</td>
<td>2012.10.20</td>
<td>1126人</td>
</tr>
<tr>
<td>第14回</td>
<td>2015.10.17</td>
<td>2600人</td>
</tr>
<tr>
<td>第15回</td>
<td>2018.10.20</td>
<td>3878人</td>
</tr>
</tbody>
</table>
| 第16回 | 2021.10.23 | YouTube再生回数：2618回
ニコニコ動画来場者数：26,964人（10/23一般公開終了時点） |

4-4-2 分子科学フォーラム

当フォーラムは「分子科学の内容を他の分野の方々や一般市民にも知らせ、また、幅広い科学の話を分子研の研究者が聞き自身の研究の展開に資するよう」との趣旨のもとに、1996年より実施されている。豊田理化学研究所と共催となっており、年度毎に年間計画を豊田理化学研究所の理事会に提出している。2008年度よりは、一般市民の方々に科学の面白さ・楽しさを伝える「市民一般公開講座」として新たに位置づけられ、2009年度には、一元的で効率的な活動の展開を目指して、広報室を中心とした実施体制の整備を進めた。この際、講演回数をこれまでの年6回から4回に変更し、密度の高い講座を開講することで、より魅力的な「分子科学フォーラム」の実現を図った。COVID-19感染拡大後はオンライン開催に切り替えられたが、開催時間、広報活動をターゲットに合わせ変更した結果、全国の社会人、大学生、高校生に参加いただけるようになり、参加人数もリアル開催よりオンライン開催の方が多い結果となった。
本年度の実施状況は以下の通り。（すべてオンライン開催）

<table>
<thead>
<tr>
<th>回</th>
<th>開催日</th>
<th>テーマ</th>
<th>講演者</th>
<th>参加人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>2022.6.10</td>
<td>量子コンピュータ ～開発者が明かすしくみと可能性～</td>
<td>武田 俊太郎（東京大学准教授）</td>
<td>約390名 （累計2,178名）</td>
</tr>
<tr>
<td>133</td>
<td>2022.9.30</td>
<td>物質科学とその美の源流をさぐる</td>
<td>田中 陵二（(公財)相模中央化学研究所）</td>
<td>約310名 （累計826名）</td>
</tr>
<tr>
<td>134</td>
<td>2022.12.9</td>
<td>ミクロとマクロを結ぶ科学：小さくても大たくなくても面白さがある</td>
<td>田崎 晴明（学習院大学教授）</td>
<td>約400名 （累計1,084名）</td>
</tr>
<tr>
<td>135</td>
<td>2023.2.3</td>
<td>化学と幾何学——多面体の定理を活用したものづくり</td>
<td>藤田 誠（分子科学研究所卓越教授／東京大学卓越教授）</td>
<td>約410名 （累計1,419名）</td>
</tr>
</tbody>
</table>

4.4.3 市民向けシンポジウム

(1) 自然科学研究機構シンポジウム

当シンポジウムは2006年より年2回のペースで実施され、下記のようにこれまでに計35回開催されている。

本シンポジウムに対する分子科学研究所の関与は次の通りである。第1回において、「21世紀はイメージング・サイエンスの時代」と銘打ったパネルディスカッション中で、岡本裕己教授が「ナノの世界まで光で見えてしまう近接場光学」というタイトルで講演を行った。第2回目は、講演会全体の企画を分子科学研究所が中心となって行った（詳細は「分子研リポート2006」を参照）。第7回では、加藤晃一教授が自らの体験に基づいて「研究の醍醐味とは何か」を伝える講演を行った。第11回では、大塚義所長（当時）が「水の揺らめきの世界：揺らぎと反応と生命」というタイトルで講演を行った。第14回は、再び講演会全体の企画を分子科学研究所が中心となって行った（詳細は「分子研レターズ68号」を参照）。第21回では、正岡重行教授（当時）が「人工光合成への挑戦～植物に学ぶ分子デザイン～」というタイトルで講演を行った。2020年度の第30回は分子科学研究所が企画し、機構と名古屋市科学館の主催で「宇宙科学と生命科学の深～いつながり～」と題したシンポジウムをオンラインで開催した。2021年度の第33回では、古賀信康准教授が「創って理解する 生命現象をつかさどる分子「タンパク質」」と題したオンライン講演を行った。

また、講演会の開催と併せて、展示コーナーを設けてビデオやパネルを用いた説明を行ってきた。常設展示室に設置されている可搬式のグラフィックパネルや模型を適宜利用するとともに、展示内容のさらなる充実に努めている。合わせて、十分な説明要員を確保するために研究者の積極的な参加も促している。

今年度の実施状況は以下の通り。

<table>
<thead>
<tr>
<th>回</th>
<th>開催日</th>
<th>テーマ</th>
<th>開催方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>2022.9.25</td>
<td>性差について考えよう ～生命から社会まで～</td>
<td>一橋講堂（ハイブリッド開催）</td>
</tr>
<tr>
<td>35</td>
<td>2023.3.12</td>
<td>自然の中に潜む不確実性とは何か？ ～科学の目で見た持続可能性～</td>
<td>東京大学安田講堂（ハイブリッド開催）</td>
</tr>
</tbody>
</table>
大学共同利用機関シンポジウム

本シンポジウムは、自然科学研究機構を含む4つの大学共同利用機関法人を構成する19の研究機関と宇宙科学研究所が、総合研究大学院大学と合同で開催したものである。各研究機関が「知の拠点群」として果たしている役割と、研究の推進を通じて切り拓かれた科学の広大なフロンティアの現状について、広く一般市民の方に紹介することを目指している。

分子科学研究所はブース展示に参加し、先端的研究成果や分子科学に関連する基本事項の解説を行っている。例えば、常設展示室に設置されている 920MHz NMR の半立体模型（第 2 回）、大型スクリーンに投影したスーパーコンピューターによるシミュレーション CG（第 3 回〜第 9 回）、および各種の大型分子模型（第 4 回〜第 10 回）研究者トーク（第 6 回〜第 9 回）等を通じて研究活動に関する詳しい説明を行った。研究者トーク（第 6 回〜第 9 回）等を通じて研究活動に関する詳しい説明を行った。第 12 回も前年に引き続きオンライン開催となり、分子科学研究所は研究紹介 CM 動画を配信し、またシンポジウム特設サイト内に分子研紹介ページを掲載した。第 13 回は分子研主体となり企画・運営を行った。「科学の時代。見えてきた未来」と題し、大学共同利用機関の教員10名が講演、パネルディスカッションを行った。ハイブリッド開催だったが、名古屋市科学館に共同主催になっていただき、名古屋市科学館サイエンスホールを講演会場とした。午前・午後とも会場はほぼ満席、視聴者数も過去最高の約30,000人（累計）となり、大変盛況なシンポジウムとなった。

第13回大学共同利用機関シンポジウム「科学の時代。見えてきた未来」プログラム

<table>
<thead>
<tr>
<th>時間</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:50</td>
<td>開会挨拶 田窪行則（大学共同利用機関協議会会長／国立国語研究所所長）</td>
</tr>
<tr>
<td>10:00–12:45</td>
<td>午前の部 どこまで見える？ 宇宙科学の未来</td>
</tr>
<tr>
<td>10:05</td>
<td>巨大フレアの痕跡が明らかにした巨大噴火の年代 箱崎真隆（国立歴史民俗博物館准教授）</td>
</tr>
<tr>
<td>10:25</td>
<td>「ひさき」衛星観測から太陽系の惑星探査へ 山崎敦（宇宙科学研究所助教）</td>
</tr>
<tr>
<td>10:45</td>
<td>見えてきた、太陽系外の惑星の姿～宇宙における生命探査～ 堺安範（アストロバイオロジーセンター／国立天文台特任助教）</td>
</tr>
<tr>
<td>11:05</td>
<td>天文学とデータ科学 池田思朗（統計数理研究所教授）</td>
</tr>
<tr>
<td>11:25</td>
<td>ビッグバン宇宙の謎 羽野昌史（素粒子原子核研究所特任教授／量子場計測システム国際拠点（QUP）拠点長）</td>
</tr>
<tr>
<td>12:00</td>
<td>講演者5名によるパネルディスカッション</td>
</tr>
<tr>
<td>12:45–13:45</td>
<td>休憩（各機関紹介動画）</td>
</tr>
<tr>
<td>13:45–16:30</td>
<td>午後の部 生き物としてのあなたに、出会ったことはありますか？</td>
</tr>
<tr>
<td>13:50</td>
<td>ブラズマで綻解く生命の謎 大塚順子（核融合科学研究所／基礎生物学研究所／新分野創成センター特任助教）</td>
</tr>
<tr>
<td>14:10</td>
<td>原子から生物まで——生命体をどのように理解すればいいのか—— 千田俊哉（物質構造科学研究所教授）</td>
</tr>
<tr>
<td>14:30</td>
<td>デジタルツインに基づく人の経験の拡張 稲邑哲也（国立情報学研究所准教授）</td>
</tr>
<tr>
<td>14:50</td>
<td>日本人の読み書き能力 1948年調査のナゾに迫る 横山詠一（国立国語研究所教授）</td>
</tr>
<tr>
<td>15:10</td>
<td>「長い日」で今の世界を見る——自然人類学から見た現在—— 長谷川真理子（総合研究大学院大学学長）</td>
</tr>
<tr>
<td>15:45</td>
<td>講演者5名によるパネルディスカッション</td>
</tr>
<tr>
<td>16:30</td>
<td>閉会挨拶 渡辺芳人（大学共同利用機関協議会副会長／分子科学研究所所長）</td>
</tr>
<tr>
<td>16:40</td>
<td>終了</td>
</tr>
</tbody>
</table>

研究支援等 83
実施状況は以下の通り。（中期計画第4期）

<table>
<thead>
<tr>
<th>回</th>
<th>開催日</th>
<th>テーマ</th>
<th>会場／開催方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2022.10.24</td>
<td>科学の時代。見えてきた未来</td>
<td>名古屋市科学館（ハイブリッド開催）</td>
</tr>
</tbody>
</table>

4-4-4 見学者受け入れ
自然科学研究機構岡崎3機関の見学者の受け入れは、岡崎統合事務センター総務部総務課企画評価係が窓口になって行われており、その中で分子科学研究所の見学者については、研究力強化戦略室が中心となって対応にあたっている。2010年5月に展示室を開設し、個人の見学者を受け入れを開始した。年間およそ300名が来訪している。2022年度は感染状況が落ち着いていることを条件として受け入れた。

見学申込み

<table>
<thead>
<tr>
<th>年度</th>
<th>団体申込（施設見学＋展示室見学）</th>
<th>個人申込（展示室）</th>
<th>見学者総数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>団体数</td>
<td>見学者数</td>
<td>実施機関名</td>
</tr>
<tr>
<td>2022</td>
<td>5</td>
<td>134</td>
<td>岡崎市立三島高等学校、静岡県立浜松高等学校、静岡大学農学部、岡崎市現職研修委員会理科部、愛知県立岡崎北高等学校</td>
</tr>
</tbody>
</table>

4-4-5 その他
(1) 岡崎商工会議所（岡崎ものづくり推進協議会）との連携
岡崎商工会議所は、産学官連携活動を通じて地元製造業の活性化と競争力向上を目的に「岡崎ものづくり推進協議会」を設立し、多くの事業を行っている。この協議会と自然科学研究機構岡崎3研究所との連携事業の一環で、協議会の会員である市内の中小企業との交流会を2007年度に開催し、この交流会によって出来あがった協力体制は現在も継続している。また岡崎商工会議所主催で隔年開催される「岡崎ものづくりフェア」へ大学・研究機関として展示ブースを設けて参加している。

(2) 岡崎市観光協会との連携
2018年より岡崎市観光協会と連携を開始し、各種市民向けのイベント等で相互に協力することで、市民への広報活動がより活発に行えるようになっている。

<table>
<thead>
<tr>
<th>実施日</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018.10.20</td>
<td>一般公開　キッチンカーのご提供</td>
</tr>
<tr>
<td>2019.6.13</td>
<td>岡さんぽ（岡崎市観光協会主催のイベント）への協力</td>
</tr>
<tr>
<td>2019.10.11</td>
<td>岡さんぽ（岡崎市観光協会主催のイベント）への協力</td>
</tr>
</tbody>
</table>
4-5 理科教育への協力

分子科学研究所は、愛知県や岡崎市という地域性を重視して、小学校から高等学校までの様々なレベルで理科教育への協力を行っている。岡崎市内の高等学校には、文部科学省に応募して採択されたスーパーサイエンスハイスクール（以下 SSH と略す）研究指定校、愛知県教育委員会より指定を受けた愛知スーパーサイエンスクール研究校や、あいち STEM ハイスクール研究指定校、さらに、科学技術振興機構（JST）のサイエンスパートナーシッププロジェクト（SPP）に応募して採択された SPP 実施校など、理科教育の充実を目指して独自の取り組みを行っているところも多い。分子研は、岡崎の 3 研究所で連携しつつ、もしくは単独で、これらの高校の活動に協力している。一方、小中学校を対象とした事業としては、出前授業、岡崎市のスーパーサイエンススクール推進事業（SSS）、職場体験などが挙げられる。また、教員対象の支援も行っている。各事業について、本年度に実施されたものを中心として、以下に記載する。

4-5-1 スーパーサイエンスハイスクール

愛知県立岡崎高等学校が 2002 ～ 2005 年度に SSH 指定校となったことを契機として、分子科学研究所は同校の SSH 事業に協力してきた。2007 年度には、再度、指定を受け、5 年間にわたる第二次 SSH 事業がスタートしている。これまで、スーパーサイエンス部の支援が主な活動であったが、2011 年度に同校が「コア SSH」としての指定を受けたのに際して、他校も含む理科教員の研修をお願いしたいとの依頼が分子研に寄せられた。これに対応して、2012 年 2 月 4 日には NMR の原理と応用に関する研修会を実施し、県内から 8 名の高校教員が参加して午前・午後を費やして講義ならびに実習を受講した。2013 年 3 月 9 日には、「分子を採る、放射光の科学」として UVSOR において研修会を実施した（5 校 7 名が参加）。2014 年 2 月 10 日には SSH 進路オリエンテーション（2 年生理系対象の講演会）の講師対応も行った。また、魚住グループ、山本グループによる「国際化学オリンピック」に参加された同校生徒さんの実験指導・支援（見事、銀メダルを受賞された）も行った。さらに、山本グループは海陽中等教育学校の生徒さんの実験指導・支援も行った（見事、金メダルを受賞された）。岡崎高校への支援としてはその他に、英語コースの授業においても分子研の外国人博士研究員が講師として参加した。岡崎高校は 2018 年度に 4 回目の SSH 指定を受け、新たに「SSH の日」を設定して生徒の成果発表を行うなど、新規の活動を展開しており、分子科学研究所はこれに協力している。

4-5-2 コスモサイエンスコース

分子科学研究所では、2008 年度に愛知県立岡崎北高等学校が国際的に活躍できる科学技術者の育成を目的に新たに設置した、コスモサイエンスコースへの協力を、岡崎市にある基礎生物学研究所、生理学研究所とともに開始した。一時期中断したが、2015 年より総合的学習の時間（研究者の講話）に講師を派遣している。同校は 2020 年度より、あいち STEM ハイスクール研究指定校となり、3 研究所で出前授業を実施している。

(中期計画第 4 期)

<table>
<thead>
<tr>
<th>開催日</th>
<th>講師</th>
<th>テーマ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022. 7. 8</td>
<td>奥村 久士 教授</td>
<td>分子研究業～授業の先に何があるのか～病気に関わるタンパク質をコンピュータシミュレーションで観察する</td>
</tr>
<tr>
<td>2022.12.12</td>
<td>長坂 将成 助 教</td>
<td>分子研究業～授業の先に何があるのか～軟 X 線で観る液体の化学</td>
</tr>
<tr>
<td>2023. 2.28</td>
<td>Adrian Urban 総研大学生</td>
<td>Science English</td>
</tr>
</tbody>
</table>
4-5-3 あいち科学技術教育推進協議会

SSH 研究指定校、愛知スーパーハイスクール研究校、さらに、SPP 実施校である愛知県下の 16 高校が、2009 年度に「あいち科学技術教育推進協議会」を立ち上げた。これは、文部科学省指定 SSH 中核拠点育成プログラムの一貫として、SSH で得た知識や組織力を活用し、全県的な取り組みとして理数教育の推進を目指したものである。当協議会は、毎年「科学三昧 in あいち」というイベントを開催している。当イベントには、県内の多数の高校から総数 300名以上の参加者が集い、科学や技術についての先進的教育活動の紹介が行われる。第 14 回（2022 年 12 月 27 日）は岡崎コンファレンスセンターでのオンサイト開催となった。分子科学研究所からは無人ブース出展および生徒のポスター発表指導を行った。

今期（中期計画第 4 期）開催された「科学三昧 in あいち」は以下の通りである。

<table>
<thead>
<tr>
<th>回</th>
<th>開催日</th>
<th>会場</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2022.12.27</td>
<td>岡崎コンファレンスセンター</td>
<td>533</td>
</tr>
</tbody>
</table>

4-5-4 国研セミナー

このセミナーは、岡崎 3 機関と岡崎南ロータリークラブとの交流事業の一つとして行われているもので、岡崎市内の小・中学校の理科教員を対象として、岡崎 3 機関の研究教育職員が講師となって 1985（昭和 60）年 12 月から始まり、毎年行われている。

4-5-5 小中学校での出前授業

岡崎市内の小中学校を対象に、物理・化学・生物・地学に関わる科学実験や観察を通して、科学への興味・関心を高めることを目的に、岡崎市教育委員会や各小中学校が企画する理科教育に協力している。

分子科学研究所が今年度担当したものは以下の通りである。

<table>
<thead>
<tr>
<th>開催日</th>
<th>テーマ</th>
<th>講師</th>
<th>対象校</th>
<th>聴講生徒数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.10.26</td>
<td>金属と電子</td>
<td>瀬川 泰知 教授</td>
<td>三島小学校</td>
<td>84</td>
</tr>
<tr>
<td>2022.11.25</td>
<td>水溶液を使ったモノづくり</td>
<td>菊地 拓郎 技術員 片柳 英樹 助手</td>
<td>小豆坂小学校</td>
<td>100</td>
</tr>
<tr>
<td>2022.11.30</td>
<td>低温で創る食品や料理、そして超伝導—低温の世界と不思議に触れてみよう—</td>
<td>豊田 剛範 技師 片柳 英樹 助手</td>
<td>新香山中学校</td>
<td>39</td>
</tr>
<tr>
<td>2022.12.25</td>
<td>おもしろい形の分子を作る</td>
<td>鈴木 敏泰 チームリーダー</td>
<td>六名小学校</td>
<td>157</td>
</tr>
<tr>
<td>2023.1.17</td>
<td>光のてこを使って目に見えないモノの形と働きをさわって調べる顕微鏡を体験しよう—てこの勉強のとき、どうしてめんどうな計算をするんだろ？—</td>
<td>片柳 英樹 助手 深 丈俊 主任研究員</td>
<td>六名小学校</td>
<td>169</td>
</tr>
</tbody>
</table>
4-5-6 職場体験学習

岡崎市内及び近隣の中学校及び高等学校の要請により、職場体験学習として中・高生の受け入れに協力している。2018年度より、研究グループによる受け入れを開始した。2022年度は2件6名を受け入れた。

(2022年度)

<table>
<thead>
<tr>
<th>受入中学校</th>
<th>体験受入施設・グループ等名</th>
</tr>
</thead>
<tbody>
<tr>
<td>豊田市立若園中学校</td>
<td>装置開発室、協奏分子システム研究センター山本G、計算科学研究センター</td>
</tr>
<tr>
<td>岡崎市立常磐中学校</td>
<td>装置開発室、協奏分子システム研究センター山本G、計算科学研究センター</td>
</tr>
</tbody>
</table>

4-5-7 その他

(1) 岡崎市小中学校理科作品展

岡崎の3研究機関は、岡崎市小中学校理科作品展に輪番（原則として3年に1回）でブース出展を行っている。2021年は岡崎市総合学習センターでのオンサイト開催となった。分子科学研究所からは、分子研一般公開についてご案内する無人ブースを出展し、作品展ご来場の方々にご覧いただいた。2022年は岡崎中央総合公園で開催された。

(2) 未来の科学者賞

岡崎3機関では、2009年度より理科教育並びに科学の将来の発展に資することを目的とし、豊かな発想や地道な努力の積重ねなど特色のある自由研究を行った児童又は生徒を褒賞するため、岡崎市小中学校理科作品展に出展された自由研究課題の中から、岡崎3機関の各研究所の研究者により構成される選考委員会により優秀者を選出し、未来の科学者賞を授与している。2022年度は、作品展前日に開催された選考会により、小学生6名、中学生4名の計10名の受賞を決定し、理科作品展場でトロフィー及び記念賞品贈呈の授与による表彰を行った。

(3) 地域連携「生徒作品表彰」

愛知教育大学附属岡崎中学校による写生会が毎年度、岡崎3機関において、「建物の配置や組み合わせの美しい自然科学研究機構を写生する」ことを目的として行われ、同校の生徒に対して岡崎3機関と触れる機会を提供している。この写生会は、2004年度の自然科学研究機構の創設以前より、毎年度受け入れている。この写生会をきっかけに、岡崎3機関を地域において身近な存在として感じてもらう機会として、2011年度から、同校の教育活動の一部である写生会における優秀者を岡崎3機関として表彰し、同校における生徒の教育の賛助となるよう、同校の協力の下、賞状等を贈呈している。2022年度は実施していない。
4-6 情報発信

2022年4月～2023年3月は、日本語プレスリリース29件、英語プレスリリース20件、新聞報道43件、その他報道9件、客員研究部門及び退職・転出後等の成果論文22件（6章掲載以外）であった。

<table>
<thead>
<tr>
<th>ホームページ公開日</th>
<th>タイトル</th>
<th>発表雑誌</th>
<th>担当研究部門</th>
<th>共同研究機関</th>
<th>整理番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.4.5</td>
<td>資源循環を実現する革新的触媒の開発・実証事業の開始について〜環境省「地域資源循環を通じた脱炭素化に向けた革新的触媒技術の開発・実証事業」の開始〜</td>
<td>-</td>
<td>物質分子科学研究領域電子構造研究部門</td>
<td>量子科学技術研究開発機構総合科学研究機構日本原子力研究開発機構</td>
<td>2201*</td>
</tr>
<tr>
<td>2022.4.13</td>
<td>どうして生物の24時間リズムは安定なのか？〜水素原子の運動から迫る時計タンパク質の温度補償制御〜</td>
<td>Communications Physics</td>
<td>協働分子システム研究センター階層分子システム解析研究部門</td>
<td>大阪大学名古屋大学</td>
<td>2202*</td>
</tr>
<tr>
<td>2022.4.18</td>
<td>概要リズムを奏でる時計タンパク質の内部で「2つの歯車」が組み合致仕組み</td>
<td>Science Advances</td>
<td>生命創成探究センター階層分子システム解析研究部門</td>
<td>大阪大学名古屋大学</td>
<td>2203*</td>
</tr>
<tr>
<td>2022.4.20</td>
<td>肝癌細胞から出る細胞外小胞を調べて肺癌の種類を診断できる可能性</td>
<td>Journal of Biological Chemistry</td>
<td>生命創成探究センター生命分子動秩序創発グループ/生命・錯体分子科学研究領域生体分子機能研究部門</td>
<td>名古屋大学大阪大学立命館大学</td>
<td>2204</td>
</tr>
<tr>
<td>2022.4.21</td>
<td>AIが化学反応の進行を説明してくれる！〜コンピューターシミュレーションに対して説明を与える人工知能の応用〜</td>
<td>Journal of Chemical Physics</td>
<td>理論・計算分子科学研究領域計算分子科学研究部門</td>
<td>大阪大学九州大学</td>
<td>2205</td>
</tr>
<tr>
<td>2022.5.6</td>
<td>時を刻むタンパク質の巧みなアクセル・ブレーキ操作〜概日リズムを原子から細胞スケールまで伝える省エネ分子,KaiC〜</td>
<td>Proceedings of the National Academy of Sciences of the United States of America</td>
<td>協働分子システム研究センター階層分子システム解析研究部門</td>
<td>名古屋大学大阪大学立命館大学</td>
<td>2206*</td>
</tr>
<tr>
<td>2022.5.20</td>
<td>炭素でできたメビウスの輪を合成〜カーボンナノベルトにひねりが加わり裏表のない分子に〜</td>
<td>Nature Synthesis</td>
<td>生命・錯体分子科学研究領域錯体物性研究部門</td>
<td>名古屋大学北海道大学</td>
<td>2207</td>
</tr>
<tr>
<td>2022.6.16</td>
<td>グリセロールリン酸が糖鎖の伸長を止めて、がん悪性化に関与している</td>
<td>International Journal of Molecular Sciences</td>
<td>生命創成探究センター生命分子動秩序創発グループ/生命・錯体分子科学研究領域生体分子機能研究部門</td>
<td>名古屋市立大学</td>
<td>2208</td>
</tr>
<tr>
<td>2022.6.24</td>
<td>アモルファス構造のトポロジーから熱伝導率を予測する技術を開発〜ミクロな構造と材料機能の相関を明らかに〜</td>
<td>The Journal of Chemical Physics</td>
<td>理論・計算分子科学研究領域理論分子科学第一研究部門</td>
<td>九州シンクロトロン光研究センター</td>
<td>2209*</td>
</tr>
<tr>
<td>2022.6.28</td>
<td>放射光の時間構造をアト秒精度で制御</td>
<td>Scientific Reports</td>
<td>極端紫外光研究施設</td>
<td>九州シンクロトロン光研究センター名古屋大学広島大学富山大学</td>
<td>2210*</td>
</tr>
<tr>
<td>2022.7.1</td>
<td>全フッ素化カーボンナノリングを初合成〜貴金属接媒を使わず市販の化合物からワンボトで合成可能〜</td>
<td>Nature Communications</td>
<td>生命・錯体分子科学研究領域錯体物性研究部門</td>
<td>名古屋大学</td>
<td>2211</td>
</tr>
<tr>
<td>2022.7.13</td>
<td>タンパク質分子の中に組み込まれた銅錯体を磁気修飾剤の制御で発見！バイオ医薬品の開発にも貢献</td>
<td>Communications Biology</td>
<td>生命創成探究センター生命分子動秩序創発グループ/生命・錯体分子科学研究領域生体分子機能研究部門</td>
<td>名古屋市立大学</td>
<td>2212</td>
</tr>
<tr>
<td>2022.7.13</td>
<td>光電子運動量測定で明らかにしたグラファイト原子1層のステップ構造</td>
<td>Physical Review B</td>
<td>極端紫外光研究施設</td>
<td>大阪大学</td>
<td>2213*</td>
</tr>
</tbody>
</table>

88 研究支援等
<table>
<thead>
<tr>
<th>日付</th>
<th>栄　</th>
<th>項目</th>
<th>構成機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.8 9</td>
<td>単一原子レベルで世界最速の2量子ビットゲートに成功―超高速量子コンピュータ実現へのブレーキスルー―</td>
<td>Nature Photonics</td>
<td>物分子科学研究領域光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8 12</td>
<td>小惑星リュウグウ：太陽系外縁部からの来訪者―多機関連携分析が読み解いた小惑星の記録―</td>
<td>Nature Astronomy</td>
<td>极端紫外光研究施設</td>
</tr>
<tr>
<td>2022.8 22</td>
<td>右巻き粒子と左巻き粒子を光の力で区別する</td>
<td>Science Advances</td>
<td>メソソピック計測研究センター微細計測研究部門</td>
</tr>
<tr>
<td>2022.8 10</td>
<td>回転イオンポンプの2つの分子モーターは固くつながり連動して動く</td>
<td>Proceedingsof the National Academy of Sciences of the United States of America</td>
<td>生命・錯体分子科学研究領域生体分子機能研究部門</td>
</tr>
<tr>
<td>2022.9 11</td>
<td>ケイ素を含む新しい有機構造体膜の合成に成功〜表面合成による炭素ナノ薄膜の多様化に道〜</td>
<td>Nature Chemistry</td>
<td>物質分子科学研究領域光分子科学第三研究部門</td>
</tr>
<tr>
<td>2022.10</td>
<td>放射光の光電場を計測する新しい方法を発見―シンクロトロン放射光の光波が振動する様子を観測―</td>
<td>OPTICA</td>
<td>极端紫外光研究施設</td>
</tr>
<tr>
<td>2022.11</td>
<td>小惑星リュウグウの活発な地質活動の歴史が明らかに</td>
<td>Nature Astronomy</td>
<td>极端紫外光研究施設</td>
</tr>
</tbody>
</table>

*分子科学研究所主体
<table>
<thead>
<tr>
<th>EurekAlert! 公開日</th>
<th>タイトル</th>
<th>日本語版整理番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.4.15</td>
<td>Unlocking Complex Workings of the Biological Clock</td>
<td>2203</td>
</tr>
<tr>
<td>2022.5.9</td>
<td>Chronobiologists Identify Key Circadian Clock Mechanism in Cyanobacteria</td>
<td>2206</td>
</tr>
<tr>
<td>2022.5.19</td>
<td>A Möbius Band Constructed Solely by Carbon Atoms</td>
<td>2207</td>
</tr>
<tr>
<td>2022.6.24</td>
<td>Stop for Migration! Glycerol Phosphate Serves as a Terminator of Glycan Elongation in Cancer Malignancy</td>
<td>2208</td>
</tr>
<tr>
<td>2022.6.24</td>
<td>Topology and Machine Learning Reveal Hidden Relationship in Amorphous Silicon</td>
<td>2209</td>
</tr>
<tr>
<td>2022.7.11</td>
<td>New Capability in Synchrotron Radiation Advances Control, Precision on Attosecond Time Scales</td>
<td>2210</td>
</tr>
<tr>
<td>2022.7.13</td>
<td>Sugar Code in Protein—Identification of a Molecular Code Embedded in Protein for Regulating Its Glycosylation</td>
<td>2212</td>
</tr>
<tr>
<td>2022.7.19</td>
<td>New Research Further Understanding of the Electronic Structure of Graphite</td>
<td>2213</td>
</tr>
<tr>
<td>2022.8.8</td>
<td>Breakthrough for the Realization of Ultrafast Quantum Computers: The World’s Fastest 2-Qubit Gate between Two Single Atoms</td>
<td>2214</td>
</tr>
<tr>
<td>2022.8.16*</td>
<td>Asteroid Ryugu: A Drifter from the Outer Solar System Region—Geochemistry and Isotopic Evidence from Organic and Phyllosilicate-Rich Material</td>
<td>2216</td>
</tr>
<tr>
<td>2022.9.21</td>
<td>Differentiate Right- and Left-Handed Particles by the Force Exerted by Light</td>
<td>2217</td>
</tr>
<tr>
<td>2022.10.3</td>
<td>Judged by Its Cover: Engineered Surface Atomic Structures for Next-Generation Electronics</td>
<td>2218</td>
</tr>
<tr>
<td>2022.10.11</td>
<td>Molecular-Motor Specialists Deepen Our Understanding of a Rotary Ion Pump of the Cell</td>
<td>2219</td>
</tr>
<tr>
<td>2022.10.13*</td>
<td>Joule Heating in a Single Molecule</td>
<td>2220</td>
</tr>
<tr>
<td>2022.10.26*</td>
<td>Imaging Coherent Lattice Vibrations on the Nanoscale</td>
<td>2222</td>
</tr>
<tr>
<td>2023.1.18</td>
<td>Distinguishing between Right and Left with Magnets—Electron Spins Reflect Chiral Molecules Without the Mirror—</td>
<td>2226</td>
</tr>
<tr>
<td>2023.1.19</td>
<td>Towards Highly Conducting Molecular Materials with a Partially Oxidized Organic Neutral Molecule</td>
<td>2225</td>
</tr>
<tr>
<td>2023.1.20</td>
<td>Critical Impacts of Interfacial Water on C–H Activation in Photocatalytic Methane Conversion</td>
<td>2227</td>
</tr>
</tbody>
</table>

*EurekAlert! 未公開のためホームページ公開日

<table>
<thead>
<tr>
<th>報道日</th>
<th>記事内容</th>
<th>新聞名</th>
<th>該当研究部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.5.4</td>
<td>藤田東大教授ら企業と“同居”</td>
<td>日刊工業</td>
<td>特別研究部門</td>
</tr>
</tbody>
</table>
| 2022.5.20 | 炭素で「メビウスの輪」名大などのチーム世界初合成 | 中日 | 生命・細胞分子科学研究領域
細胞物性研究部門 |
| 2022.5.20 | 生物の24時間リズム一定に保たれる理由分子研、QSTなど明解 | 科学 | 協奏分子システム研究センター
階層分子システム解析研究部門 |
| 2022.5.27 | カーボンナノベルト合成ひねり構造「メビウスの輪」で成功 | 科学 | 生命・細胞分子科学研究領域
細胞物性研究部門 |
<table>
<thead>
<tr>
<th>日付</th>
<th>タイトル</th>
<th>オリジナル</th>
<th>部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.5.31</td>
<td>基礎研究を社会につなぐ</td>
<td>日刊工業</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2022.6.10</td>
<td>アミノ酸は23種 りゅうぐうの砂「生命の源」確認</td>
<td>中日</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.6.29</td>
<td>100京分の1秒で制御 富大など 電磁波の一種「放射光」</td>
<td>富山</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.7.3</td>
<td>無依さん業績たたえ胸像</td>
<td>中日</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>2022.7.6</td>
<td>「位相幾何学」で熱伝導率予測</td>
<td>日経産業</td>
<td>理論・計算分子科学研究领域、理論分子科学第一研究部門</td>
</tr>
<tr>
<td>2022.7.8</td>
<td>「アト秒」精度で放射光制御</td>
<td>日経産業</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.7.15</td>
<td>黒船表面の原子層判別 分子研など技術 端部性質を理解・制御</td>
<td>日刊工業</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.7.22</td>
<td>「放射光の時間構造」アト秒精度で制御</td>
<td>科学</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.7.28</td>
<td>「ガラス張り拠点」から革新 東大・藤田研と島津製作所など</td>
<td>日経産業</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2022.7.29</td>
<td>科学的深淵</td>
<td>日刊工業</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.8.4</td>
<td>地中核大と新分野開拓</td>
<td>日刊工業</td>
<td>分子科学研究所</td>
</tr>
<tr>
<td>2022.8.9</td>
<td>世界最速65ナノ秒動作 分子研、2量子ビットゲーム</td>
<td>中日</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8.11</td>
<td>小惑星 地球に水運ぶ？ りゅうぐうの砂</td>
<td>日刊工業</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8.16</td>
<td>「リュウグウ」に水あった！ 海洋機構など構成成分から証拠発見</td>
<td>中日</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.8.16</td>
<td>100京分の1秒で制御 富大など 電磁波の一種「放射光」</td>
<td>富山</td>
<td>極端紫外光研究施設</td>
</tr>
<tr>
<td>2022.8.19</td>
<td>冷却原子型量子コンピューター実現へ朗報</td>
<td>科学</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8.22</td>
<td>量子計算機の演算素子を高速化</td>
<td>日経産業</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8.27</td>
<td>量子計算 大規模化へ新技術</td>
<td>読売</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.8.30</td>
<td>冷却原子型量子コンピューター実現へ朗報</td>
<td>科学</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.9.30</td>
<td>量子コンピューター第３的方式浮上 冷却原子型 日本も先頭集団</td>
<td>日経産業</td>
<td>光分子科学研究領域、光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.10.2</td>
<td>3~10ノーベル賞発表 日本2年連続受賞なるか</td>
<td>日本経済</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2022.10.3</td>
<td>ノーベル賞きょうから発表 中部の有力候補卓越的研究 吉報待つ</td>
<td>中日</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2022.10.4</td>
<td>学際統合物質科学研究機構名古屋大 設立記念シンポジウム</td>
<td>文教ニュース</td>
<td>所長</td>
</tr>
</tbody>
</table>

研究支援等 91
<table>
<thead>
<tr>
<th>日付</th>
<th>タイトル</th>
<th>掲載誌等名</th>
<th>該当研究部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.10.5</td>
<td>「アインシュタインの疑問 解き明かした」量子コンピュータなどに道筋</td>
<td>中日</td>
<td>光分子科学研究領域 光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.10.10</td>
<td>量子研究 日米の差鮮明</td>
<td>日刊工業</td>
<td>光分子科学研究領域 光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.10.18</td>
<td>単一分子ジュール熱観測 分子研など素子実現の基礎知見</td>
<td>日刊工業</td>
<td>メソスコピック計測研究センター 広帯域相関計測解析研究部門</td>
</tr>
<tr>
<td>2022.10.24</td>
<td>「冷却原子型」世界最速を記録 分子科学研.第3の量子コンピューター確率</td>
<td>日経産業</td>
<td>光分子科学研究領域 光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.11.18</td>
<td>ケイ素含む新有機構造体膜 NIMSが合成に成功</td>
<td>科学</td>
<td>光分子科学研究領域 光分子科学第二研究部門</td>
</tr>
<tr>
<td>2022.12.16</td>
<td>分子研 岡崎の竜美丘小で授業 多様な形の分子学んだよ</td>
<td>中日</td>
<td>機器センター</td>
</tr>
<tr>
<td>2023.1.1</td>
<td>「自己組織化」一筋 化学を広げる</td>
<td>朝日</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2023.1.9</td>
<td>愛知県.3研究所と連携 科学技術の人材育成など</td>
<td>日刊工業</td>
<td>所長</td>
</tr>
<tr>
<td>2023.1.16</td>
<td>基研・生研・分子研 自然機構3研究所が件と連携協定</td>
<td>文教連報</td>
<td>所長</td>
</tr>
<tr>
<td>2023.1.9</td>
<td>基研・生研・分子研 愛知県と連携する協定締結</td>
<td>文教ニュース</td>
<td>所長</td>
</tr>
<tr>
<td>2023.1.19</td>
<td>「毒」と「薬」 磁石で選別</td>
<td>中日</td>
<td>協奏分子システム研究センター機能分子システム創成研究部門</td>
</tr>
<tr>
<td>2023.1.19</td>
<td>超電導キラル物質 磁石で左右判定</td>
<td>日刊工業</td>
<td>協奏分子システム研究センター機能分子システム創成研究部門</td>
</tr>
<tr>
<td>2023.2.3</td>
<td>「化学と幾何学」きょうオンライン講座</td>
<td>中日</td>
<td>特別研究部門</td>
</tr>
<tr>
<td>2023.2.3</td>
<td>超伝導体のキャラリティ 磁石の表面で分別</td>
<td>科学</td>
<td>協奏分子システム研究センター機能分子システム創成研究部門</td>
</tr>
<tr>
<td>2023.2.6</td>
<td>文科省と分子研が連携 GIGAスクール特別講座 量子力学100年の謎と量子コンピュータへの挑戦！</td>
<td>文教ニュース</td>
<td>分子科学研究所</td>
</tr>
</tbody>
</table>

その他報道 (2022年度)

<table>
<thead>
<tr>
<th>発行日時</th>
<th>記事等内容</th>
<th>掲載誌等名</th>
<th>該当研究部門</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022.7.4 19:30</td>
<td>研究所と連携した理数授業（岡崎北高校出前授業）</td>
<td>チャンネルおかざき</td>
<td>生命創成探求センター 生命分子動態シミュレーション研究グループ</td>
</tr>
<tr>
<td>2022.7.4 18:00 【再放送】</td>
<td>研究所と連携した理数授業（岡崎北高校出前授業）</td>
<td>チャンネルミックス</td>
<td>生命創成探求センター 生命分子動態シミュレーション研究グループ</td>
</tr>
<tr>
<td>2022.10.5</td>
<td>2022年のノーベル物理学賞に「量子もつれ」の研究者3人</td>
<td>NHK総合サイト</td>
<td>光分子科学研究領域 光分子科学第二研究部門</td>
</tr>
</tbody>
</table>
客員研究部門及び退職、転出後等の成果論文（所属に分子科学研究所を含む）（2022年度）

5. 各種事業

大学共同利用機関である分子科学研究所は、国際的な分子科学研究の中核拠点として国内外の研究者を中心とした共同研究と設備を中心とした共同利用を積極的に推進し、大学等との人事流動や国際交流を活性化しながら、周辺分野を含めた広い意味の分子科学の発展に貢献する使命を持っている。

分子科学研究所が行う事業には、「先端的な研究を推進する拠点事業」、「国内の研究者への共同研究・共同利用支援に関する事業」、「研究者の国際ネットワーク構築に関する事業」、「研究力強化推進事業」がある。予算是運営費交付金の一般経費・特別経費、文部科学省の委託事業、日本学術振興会等の競争的資金で実施している。運営費交付金の一般経費以外はいずれも期間が定められており、運営費交付金一般経費も毎年削減を受けている。

（1）「先端的な研究を推進する拠点事業」のUVSOR共同利用事業（放射光分子科学）、エクストリームフォトニクス連携事業（レーザー分子科学）に関連するものとして、文部省の「革新的ハイパフォーマンス・コンピューティング・インフラ（HPCI）の構築」プロジェクトは2015年度で終了し、2014年度より「エネルギーの高効率な創出、変換・貯蔵、利用の新規基盤技術の開発（ポスト京都総合エネルギー研究機構）」が実施された。これは2019年度で終了し、富岳成果創出加速プログラムとして継続した（分子科学研究所としての活動は行っていない）。さらに、理論計算に関連するものとして、文部省「元素戦略プロジェクト」の「触媒・電池の元素戦略研究拠点」（分子研は分担）を受託し、2021年度まで実施した。2018年度より文部科学省から、「光・量子飛躍フラッグシッププログラムQ-LEAP」事業を、2022年度から内閣府/科学技術振興機構から「ムーンショット型研究開発事業」を受託している。

（2）「国内の研究者への共同研究・共同利用支援に関する事業」のうち、実験研究のための共同利用は機器センターが担当している。研究設備ネットワーク事業（2007年度から「化学系研究設備有効活用ネットワークの構築」、2010年度より「大学連携研究設備ネットワークによる設備相互利用と共同研究の促進」）を進めている。また、11年度までは文部省の研究推進共用イノベーション創出事業「ナノテクノロジーネットワーク」の「中部地区ナノテク総合支援プロジェクトの幹事機関として、2012年度より文部省「ナノテクノロジープラットフォーム」事業の「分子・物質合成プラットフォーム」の代表機関（機器センター内にナノテクノロジープラットフォーム運営室を設置）として、共同利用設備の共用を推進している。この事業は2021年度で終了し、後継事業として文部省「マテリアル先端リサーチインフラ」が2021年度から開始することとなり、分子科学研究所はそのスポーク機関として参画している。2022年度からはこの事業が本格稼働した。前述の大学連携研究設備ネットワーク事業については、当初の3つの目的である、全国的設備相互利用、設備復活再生、重点領域設備重点配置のうち、第2期中期計画期間では、最初のものだけが生き残り実施されることになったが、2015年度には2016年度以降（第3期中期計画期間）の事業の方向性を見直した。一方、後2者については、共同利用設備の安定的な運営を勘案し、旧分子スケールナノサイエンスセンターの共同利用設備をすべて機器センターに集約し、予算面では「マテリアル先端リサーチインフラ」事業予算（外部資金）を主な財源とし、運営費交付金一般経費も用いながら運用している。
（3）「研究者の国際ネットワーク構築に関する事業」では、個人ベースの萌芽的な取り組みと組織ベースの国際共同研究拠点の形成がある。従来からの外国人顧問制度、客員外国人制度、招へい外国人制度、国際研究集会（岡崎コンファレンスなど）を実施すると同時に、第1期中期計画期間には独自の分子科学国際共同プログラムを進めた。このプログラムは個人ベースの国際共同研究のきっかけ（萌芽的国際共同）を作るものである。さらに国際共同研究拠点として組織ベースで取り組むために、第2期中期計画期間においては、自然科学研究機構としての運営費交付金特別経費で（自然科学研究における国際的学術拠点の形成）事業がスタートした。分子科学研究所では、「分子科学国際共同研究拠点の形成」による新たな取組（協定締結等）を進めている。また、日本学術振興会の多国間交流事業「アジア研究教育拠点事業」の一環として、「物質・光・理論分子科学のフロンティア」（2006年度〜2010年度）の事業を行ってきた。5年間、日中韓台の4拠点（協定をそれぞれ締結）を中心にマッチングファンド方式での様々な試みを行った。また、分子科学研究所（総合研究大学院大学として）は、外務省による21世紀東アジア青少年大交流計画（JENESYSプログラム）の枠で設定された日本学術振興会の「若手研究者交流支援事業」に2008年度より2011年度まで毎年、応募・採択され、対象国の若手研究者（院生を含む）の人材育成に貢献してきた。これらの事業については、現在、これまでの経験を踏まえて精査を行った上で集中・重点化し、いくつかの予算枠を組み合わせる形で実施している。なお、2015年度以降はIMS-IIPA（International Internship Program in Asia）としてアジア地区の国際ネットワークを構築するとともに、米国、欧州、イスラエルとの若手研究者を対象とした国際共同研究（こちらはIMS-IIPと呼ぶ）を強化しているところである。

（4）「研究力強化推進事業」
自然科学研究機構として文科省の「研究大学強化促進事業」の予算を受けて機構として一体的に行う事業である。2013年10月より10年計画で開始された。詳しくは5-8を参照のこと。
5-1 新分野創成センター（自然科学研究機構）

自然科学研究機構は、共同研究・共同利用の研究機関として広範な自然科学の先端的研究を推進するとともに、未知の課題に挑戦するため、従来の研究領域の枠組みを超えて多様な研究者が協働する研究の場を創り出し、研究者コミュニティの発展に貢献することを目的としている。従来の研究領域の枠組みを超えて、多様な研究者が協働する研究の場を創り出し、研究者コミュニティの発展に貢献することを目的としている。この従来の研究領域の枠組みを超えた「新たな研究領域の開拓」を目的として、2009年に新分野創成センターが設立され、新しい研究領域の創成を目指すブレインサイエンス研究分野と、広範な自然現象を新たな視点から理解することを目的としたイメージングサイエンス研究分野の二つの研究分野でスタートした。2013年には第三の研究分野として、宇宙における生命研究分野を立ち上げ、2015年度からアストロバイオロジーセンターに移行した。またブレインサイエンス研究分野とイメージングサイエンス研究分野は2018年度に機構直属の組織として新しく設立された生命創成探究センターに移行した。

これによって設立後9年を経て新分野創成センターの三つの研究分野は発展的に解消することとなった。これらに代わって数年間にわたって推進する新たな研究領域の設定に関して、2015年に新分野創成センターの中で新分野探索室を設置し、機構の5機関から委員が出て議論を進めることが決定した。2018年度から新たな研究分野として、「光放射学」を設定することが決定した。また、新分野探索室で設定する研究分野以外に、コンソーシアム型共同研究を推進する体制として「プラズマバイオ」を新たに研究分野として、2018年度から設定することとなった。

ここでは、特に分子科学研究所が深く関与することが想定される、先端光科学研究分野について述べる。光学顕微鏡や分光学における先端的な技術は、これまで自然科学研究の各分野にブレークスルーをもたらし、20世紀にはレーザーや放射光などの新しい光源の出現によりより遠くまで加速した。それらはさらに、観察対象の性質を調べる道具としてのみならず、光による制御の技術を生み出し、光科学の広い分野への応用を可能とした。現在においても光の新たな特性に関する発見や解明が進展を見せ、光イメージングにおいては多様な超解像の手法が創出されるなど、新たな光操作技術や光計測技術の発展とその広い自然科学分野での応用が期待されている。新分野創成センターに設置された先端光科学研究分野では、先端光科学分野を新たに開発することを目的とした研究を推進する。これにより、新分野としての萌芽を探索し、展開を図ることを目的として活動を行う。

この目的に沿って研究活動を推進する体制として、教授会議を組織し、各機関から1名ずつの併任教員（教授または准教授）、機構内の教授が併任する分野長（現在分子研が担当）、新分野創成センター長、及び数名の所外からの客員教授・准教授で構成することとなった。また先端光科学研究分野で独自の研究活動を推進するために、専任の特任助教を雇用することとなった。

このような体制を構築した上で、新たな分野融合的発想に基づく光技術の適用法や新技術開発につながる先駆的・挑戦的な萌芽研究を展開・推進する「共同研究」、およびそれらを探索する「研究会」のプロジェクト提案を広く機構内外から募集し、教授会議での審査を通じて採択課題を推進することとなった。2021年度は、10件の共同研究を採択し（うち5件が機構内外からの応募）、研究活動を支援している。また教授会議で企画するワークショップとして、2019年度には"Chiro-Optical Effects in Nanomaterials"を、2020年度にはオンライントレーニングで「先端光科学研究分野勉強会」を開催した。2021年度は、日本学術会議と分子科学研究所で共同主催で開催された「Atomics Laser Science Research Hub（ALFA）計画の現状と展望」に共催として加わる形とした。2022年度は、学術変革領域研究A「キラル光物質科学」との共催として、ワークショップ「キラルな光とキラルな物質」を開催した。専任の特任助教は2018年度に公募によって広く人材を募集し、教授会議構成員の内の5名で構成される選考委員会で選考が行われて候補者と決定し、2018年度末に着手して研究活動を行っている。
5-2 光・量子飛躍フラッグシッププログラム Q-LEAP（文部科学省）

量子コンピュータ・量子シュミュレータ・量子センサなど、近年開発競争が激化している量子科学技術は、電子や原子の「波の性質」を活かした質的に新しいテクノロジーである。スパコンでさえ10の何百乗年もかかるような計算を1秒以内で終わらせることができ、機能性材料・薬剤・情報セキュリティー・人工知能などに革命を起こし得るため、世界主要各国の科学技術政策において莫大な投資が行われている。例えば米国では、国防省や国立科学財団（NSF）等により毎年約200億円オーダーの投資が行われている他、NSFおよびエネルギー省（DOE）において2019年より新たな量子科学技術プロジェクトが始まった。EUでは2018年から総額約1300億円規模を投資する10年プロジェクト「Quantum Technology Flagship」が進行中だ。英国では2014年から5年間で約500億円を投入した「The UK National Quantum Technologies Programme」の第2期が始まった。中国政府も、「科学技术イノベーション第13次五カ年計画（2016年）」の重点分野として、量子通信と量子コンピュータを重大科学技術プロジェクト、量子制御と量子情報を基礎研究の強化に位置づけている他、1000億円以上を投資して量子情報科学の国立研究所を合肥に建設中である。民間企業でも、Google、IBM、Microsoft、Intel等のITジャイアントが2000年代半ば以降、量子情報技術に莫大な投資を進めている。これらの国際動向を受けて、日本でも、文部科学省の科学技術・学術審議会において、量子科学技術に関する政策課題を議論する「量子科学技術委員会」が2015年6月に発足し、ここでの議論を踏まえ2018年に新たな国家事業「光・量子飛躍フラッグシッププログラム Q-LEAP」（2018～2027年度；2018年度予算総額22億円）がスタートした。本事業は、経済・社会的な重要課題に対し、量子科学技術を駆使して、非連続的な解決（Quantum leap）を目指す研究開発プログラムである（https://www.jst.go.jp/stpp/q-leap/index.html）。

分子科学研究所では、光分子科学研究領域の大森賢治教授が量子科学技術委員会の専門委員・副主査として、我が国の量子科学技術に関する政策課題・将来展望の議論を先導する立場を果たしてきた。また、大森教授が研究代表者を務める新たな研究プロジェクト「アト秒ナノメートル領域の時空間光制御に基づく冷却原子量子シュミュレータの開発と量子計算への応用」がQ-LEAP「量子情報処理」領域の2大规模・基礎基盤研究に採択され進行中である。共同研究機関である浜松ホトニクス中央研究所・京都大学・岡山大学・近畿大学・オックスフォード大学・ハイデルベルク大学・ストラスブル大学・インスブルック大学らと緊密に連携して、卓越したコアコンピテンスを有し、量子力学の根源的な問題に深く透き切り込む全く新しい量子シュミュレータ・量子コンピュータの開発を目指す。この他、同事業の採択課題「Flagshipプロジェクト：先端レーザーイノベーション拠点」（研究代表者：藤井輝夫（東京大学））の「次世代アト秒レーザー光源と先端計測技術の開発」部門には平等拓範特任教授が、「Flagshipプロジェクト：量子生命技術の創製と医学・生命科学の革新」（研究代表者：馬場豪信（量子科学技術研究開発機構））および「基礎基盤研究：複雑分子系としての光合成機能の解明に向けた多原子量子もつれ分光技術の開発」（研究代表者：清水亮介（電気通信大学））には石崎章仁教授が、分担者として加わっており、同事業に寄与している。
「ムーンショット型研究開発事業」は、内閣府の主導により、超高齢化社会や地球温暖化問題など重要な社会課題に対し、我が国発の破壊的イノベーションの創出を目指し、従来技術の延長にない、より大胆な発想に基づく挑戦的な、そして人々を魅了する、野心的な目標（ムーンショット）の実現を推進するための、国家的な大型研究プログラムである。（内閣府／JST むーンショット型研究開発事業：https://www.jst.go.jp/moonshot/）

目標6「2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現」では、従来のコンピュータの進歩が限界に達しつつあるなか、爆発的に増大する情報処理の需要に対応する量子コンピュータの開発を目指す。多様、複雑で大規模な実社会の問題を量子コンピュータで解くためには、量子的な誤りを直しながら正確な計算を実行する、誤り耐性型汎用量子コンピュータの実現が鍵となる。

分子科学研究所では、光分子科学研究領域の大森賢治教授が目標6の研究開発プログラム「大規模・高コヒーレンスな動的原子アレー型・誤り耐性量子コンピュータ」のプロジェクトマネージャー（PM）に決定した。大森教授のプロジェクトでは、光ビンセットを用いて大規模に配列させた冷却原子量子ビットの各々を、自在かつ高速に移動させつつゲート操作、誤り検出・訂正を行う動的量子ビットアレーの実装、および産学連携の下での構成要素の統合・パッケージ化による高い安定性とユーザビリティの達成により、誤り耐性量子コンピュータの実現を目指す。
5-4 大学連携研究設備ネットワークによる研究設備共用促進事業

大学連携研究設備ネットワークは、化学系の教育研究組織を持つ全国の機関が連携し、老朽化した研究設備の復活再生、及び、最先端研究設備の重点的整備を行い、大学間での研究設備の有効活用を図ることを目的として、文部科学省特別経費「化学系研究設備有効活用ネットワークの構築」事業として2007年度よりスタートした。分子科学研究所が事務局を担当するこの事業は、2010年度から「大学連携研究設備ネットワークによる設備相互利用と共同研究の促進」事業として経常経費化され、2017年度からは「大学連携研究設備ネットワークによる研究設備共用促進」事業（以下「本事業」という）として運営が行われている。

現在、本事業では国立大学ばかりでなく公立大学や高等専門学校を含む77機関が参画して機器共用を実施し、利用機関数は私立大学や企業も含めて約600に上っている。参画機関の外部公開機器の登録台数は1,175台（本事業の予約・課金システムを通して利用できる設備）、紹介のみの登録設備（各参画機関の独自の予約・課金システムを通して利用できる設備）を含めて3,345台であり、登録ユーザー数は約17,000名に達している（数値は2023年3月末現在）。表1には利用実績件数の推移を示した。発足当時から順調に学外利用数が増加し、現在では3,000件／年以上に達している。2017年度に、設備の登録範囲を化学系設備のみならず物質科学全般に拡大したことにより、2019年度からは、利用者に限定していた公私立大学へも設備登録ができるよう規約を改めた。これらの施策により、さらに登録設備の増加とネットワーク拡大、それに伴う利便性向上が期待される。

第4期中期計画の初年度にあたる2022年度においても、設備の学外利用を促進するために、外部利用が期待される設備の補修やコンポーネント追加による高機能化等の提案を支援する研究設備共用加速事業（表2）を実施した。また、外部利用促進に向け参画機関同士や外部機関との交流を促進する形式の講習会・研修会を開催した（表3）。これらの講習会・研修会の事業の実施においては、文部科学省マテリアル先端リサーチインフラ事業、国立大学法人機器・分析センター協議会、等とも連携しながら、企画、運営を行っている。

本事業に対しては、2017年度より、機構本部の自然科学大学間連携推進（NICA）事業においても予算が継続的に措置されている。これまで研究者間のつながりで運営されていたネットワーク型共同研究について、機関間の組織的な関係を強化し一層の発展を目指すことを目的に、連携の強化や集約による分野別予算の確保や人・物的資源の有効活用等（マネージャー人件費や予約課金システム更新費、講習会強化費用等）が可能となった。これらの施策は本事業の安定運営に大きく寄与している。今後も引き続き、①予約・課金システム等の安定運用と改善、②研究設備の共用加速事業の実施、③講習会・研修会の開催、④他の設備共用事業等との連携強化、⑤広報活動、等を行い更に事業を推進していく予定である。

表1 大学連携研究設備ネットワーク利用実績一覧

<table>
<thead>
<tr>
<th>年度</th>
<th>学内利用</th>
<th>学外利用</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>国立大</td>
<td>公私大等</td>
</tr>
<tr>
<td>2007</td>
<td>5,570</td>
<td>158</td>
</tr>
<tr>
<td>2008</td>
<td>7,081</td>
<td>122</td>
</tr>
<tr>
<td>2009</td>
<td>10,520</td>
<td>183</td>
</tr>
<tr>
<td>2010</td>
<td>48,833</td>
<td>354</td>
</tr>
<tr>
<td>2011</td>
<td>73,997</td>
<td>438</td>
</tr>
<tr>
<td>2012</td>
<td>85,128</td>
<td>490</td>
</tr>
<tr>
<td>2013</td>
<td>88,516</td>
<td>576</td>
</tr>
</tbody>
</table>

100 各種事業
<table>
<thead>
<tr>
<th>年度</th>
<th>順位</th>
<th>合計</th>
<th>部署</th>
<th>代表者</th>
<th>職名</th>
<th>課題名</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>108,863</td>
<td>682</td>
<td>2014</td>
<td>108,863</td>
<td>682</td>
<td>254</td>
</tr>
<tr>
<td>2015</td>
<td>113,063</td>
<td>757</td>
<td>2015</td>
<td>113,063</td>
<td>757</td>
<td>329</td>
</tr>
<tr>
<td>2016</td>
<td>111,728</td>
<td>798</td>
<td>2016</td>
<td>111,728</td>
<td>798</td>
<td>448</td>
</tr>
<tr>
<td>2017</td>
<td>119,077</td>
<td>1,005</td>
<td>2017</td>
<td>119,077</td>
<td>1,005</td>
<td>698</td>
</tr>
<tr>
<td>2018</td>
<td>143,789</td>
<td>1,154</td>
<td>2018</td>
<td>143,789</td>
<td>1,154</td>
<td>671</td>
</tr>
<tr>
<td>2019</td>
<td>119,077</td>
<td>1,005</td>
<td>2019</td>
<td>119,077</td>
<td>1,005</td>
<td>820</td>
</tr>
<tr>
<td>2020</td>
<td>146,621</td>
<td>962</td>
<td>2020</td>
<td>146,621</td>
<td>962</td>
<td>701</td>
</tr>
<tr>
<td>2021</td>
<td>169,617</td>
<td>1,053</td>
<td>2021</td>
<td>169,617</td>
<td>1,053</td>
<td>738</td>
</tr>
<tr>
<td>2022</td>
<td>175,491</td>
<td>1,121</td>
<td>2022</td>
<td>175,491</td>
<td>1,121</td>
<td>810</td>
</tr>
</tbody>
</table>

表 2 2022年度加速事業課題一覧

<table>
<thead>
<tr>
<th>大学</th>
<th>部署</th>
<th>代表者</th>
<th>職名</th>
<th>課題名</th>
</tr>
</thead>
<tbody>
<tr>
<td>千葉大学</td>
<td>共用機器センター</td>
<td>樫 飛雄真</td>
<td>准教授</td>
<td>高磁場 NMR の固体ブロープ整備</td>
</tr>
<tr>
<td>東京農工大学</td>
<td>学術研究支援総合センター</td>
<td>野口 恵一</td>
<td>教授</td>
<td>二重取東磁場型質量分析計の機能復活による設備共用加速</td>
</tr>
<tr>
<td>山梨大学</td>
<td>工学部附属ものづくり教育実践センター</td>
<td>勝又 まさ代</td>
<td>技術専門職員</td>
<td>電子スピン共鳴装置の温度可変システム整備</td>
</tr>
<tr>
<td>奈良先端大</td>
<td>物質科学教育研究センター</td>
<td>河合 壯</td>
<td>教授</td>
<td>Autoflex2(MALDI-TOFMS) 装置の共用促進のための施設整備事業</td>
</tr>
<tr>
<td>奈良先端大</td>
<td>物質科学教育研究センター</td>
<td>河合 壯</td>
<td>教授</td>
<td>共同利用者の利便性向上のための多機能走査型 X 線光電子分光分析装置制御用パソコンアップグレード</td>
</tr>
<tr>
<td>大阪大学</td>
<td>産業科学研究所</td>
<td>鈴木 健之</td>
<td>准教授</td>
<td>固体核磁気共鳴装置の保守整備による依頼利用促進</td>
</tr>
<tr>
<td>大阪大学</td>
<td>理学研究科分析機器測定室</td>
<td>今田 勝巳</td>
<td>教授</td>
<td>分子間相互作用解析装置（表面プラズモン共鳴装置）のリモート測定対応化と整備</td>
</tr>
<tr>
<td>広島大学</td>
<td>技術センター</td>
<td>篠本 哲子</td>
<td>契約専門職員</td>
<td>ナノ LC システムの点検整備による質量分析計の外部利用促進</td>
</tr>
<tr>
<td>広島大学</td>
<td>技術センター</td>
<td>前田 慎</td>
<td>技術主任</td>
<td>真空ポンプ消耗品パーツ交換並びに清掃整備による装置の安定稼働促進</td>
</tr>
<tr>
<td>鳥取大学</td>
<td>研究推進機構研究基盤センター</td>
<td>森本 秋男</td>
<td>准教授</td>
<td>ガスクロマトグラフ質量分析装置の自動化と多サンプル対応化による設備共用の加速化</td>
</tr>
<tr>
<td>高知大学</td>
<td>実験実習機器施設</td>
<td>坂本 修士</td>
<td>教授</td>
<td>オールインワン型光顕微鏡の共用化促進のための「機能拡張」事業</td>
</tr>
<tr>
<td>愛媛大学</td>
<td>学術支援センター物質科学部門</td>
<td>谷 弘幸</td>
<td>准教授</td>
<td>単結晶 X 線構造解析装置の相互利用促進事業</td>
</tr>
<tr>
<td>九州大学</td>
<td>生体防衛医学研究所</td>
<td>福井 宣規</td>
<td>教授</td>
<td>「多階層生体防衛システム研究拠点」事業におけるクライオ電子顕微鏡 Polara と汎用電子顕微鏡 TE20 の全国相互利用の促進</td>
</tr>
<tr>
<td>九州大学</td>
<td>生体防衛医学研究所</td>
<td>福井 宣規</td>
<td>教授</td>
<td>「トランスオミクス医学研究拠点ネットワーク形成事業」における超並列シーケンサー NovaSeq6000 の相互利用の促進</td>
</tr>
<tr>
<td>長崎大学</td>
<td>研究開発推進機構設備共同利用部門</td>
<td>真木 俊英</td>
<td>准教授</td>
<td>高輝度単結晶構造解析装置再整備事業</td>
</tr>
<tr>
<td>長崎大学</td>
<td>研究開発推進機構設備共同利用部門</td>
<td>真木 俊英</td>
<td>准教授</td>
<td>透過型電子顕微鏡整備事業</td>
</tr>
</tbody>
</table>
表3 2022年度講習会・研修会開催一覧

<table>
<thead>
<tr>
<th>講習会・研修会名</th>
<th>申請者</th>
<th>開催日</th>
<th>参加数</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量分析初歩講習会 1</td>
<td>大阪大学</td>
<td>2022年 4月22日（金）</td>
<td>68</td>
</tr>
<tr>
<td>ラマン分光初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 4月27日（水）</td>
<td>54</td>
</tr>
<tr>
<td>英語研修1（スピーキング）</td>
<td>静岡大学</td>
<td>2022年 5月16日（月）</td>
<td>12</td>
</tr>
<tr>
<td>質量分析初歩講習会 2</td>
<td>大阪大学</td>
<td>2022年 5月20日（金）</td>
<td>63</td>
</tr>
<tr>
<td>NMR 初歩講習会</td>
<td>鳥取大学</td>
<td>2022年 5月27日（金）</td>
<td>65</td>
</tr>
<tr>
<td>分析装置総覧講習会</td>
<td>分子科学研究所</td>
<td>2022年 6月10日（金）</td>
<td>128</td>
</tr>
<tr>
<td>SPM 初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 6月23日（木）</td>
<td>38</td>
</tr>
<tr>
<td>英語研修2（英訳）</td>
<td>静岡大学</td>
<td>2022年 6月27日（月）</td>
<td>6</td>
</tr>
<tr>
<td>質量分析講習会3 質量分析MALDI-MSハイブリッド講習会</td>
<td>大阪大学</td>
<td>2022年 7月7日（木）</td>
<td>61</td>
</tr>
<tr>
<td>粉末X線回折初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 7月8日（金）</td>
<td>40</td>
</tr>
<tr>
<td>英語研修3（パラフレーミング）</td>
<td>静岡大学</td>
<td>2022年 7月8日（金）</td>
<td>6</td>
</tr>
<tr>
<td>固体NMR測定【中級者コース】</td>
<td>鳥取大学</td>
<td>2022年 7月14日（木）</td>
<td>19</td>
</tr>
<tr>
<td>質量分析ESI-MSハイブリッド講習会</td>
<td>大阪大学</td>
<td>2022年 8月4日（木）</td>
<td>44</td>
</tr>
<tr>
<td>英語研修4（集合研修）</td>
<td>静岡大学</td>
<td>2022年 9月16日（金）</td>
<td>18</td>
</tr>
<tr>
<td>ESR 初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 9月16日（金）</td>
<td>27</td>
</tr>
<tr>
<td>英語研修5（スピーキング）</td>
<td>静岡大学</td>
<td>2022年 9月26日（月）</td>
<td>12</td>
</tr>
<tr>
<td>固体NMR測定（上級者コース）</td>
<td>鳥取大学</td>
<td>2022年 10月6日（木）</td>
<td>10</td>
</tr>
<tr>
<td>機器分析における試料前処理講習会</td>
<td>大阪大学</td>
<td>2022年 10月13日（木）</td>
<td>47</td>
</tr>
<tr>
<td>単結晶X線回折初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 10月20日（木）</td>
<td>45</td>
</tr>
<tr>
<td>第1回NMR構造解析講習会</td>
<td>鳥取大学</td>
<td>2022年 11月10日（木）</td>
<td>45</td>
</tr>
<tr>
<td>質量分析講習会7-1</td>
<td>大阪大学</td>
<td>2022年 11月11日（金）</td>
<td>34</td>
</tr>
<tr>
<td>第1回分子研NMRセミナー</td>
<td>分子科学研究所</td>
<td>2022年 11月14日（木）</td>
<td>61</td>
</tr>
<tr>
<td>第2回分子研NMRセミナー</td>
<td>分子科学研究所</td>
<td>2022年 11月17日（木）</td>
<td>58</td>
</tr>
<tr>
<td>SQUID 初歩講習会</td>
<td>分子科学研究所</td>
<td>2022年 11月18日（金）</td>
<td>26</td>
</tr>
<tr>
<td>質量分析講習会6</td>
<td>大阪大学</td>
<td>2022年 11月22日（火）</td>
<td>29</td>
</tr>
<tr>
<td>クライオミクロトーム実践講習会</td>
<td>分子科学研究所</td>
<td>2022年 11月25日（金）</td>
<td>20</td>
</tr>
<tr>
<td>SEM（走査形電子顕微鏡）中級講習会</td>
<td>分子科学研究所</td>
<td>2022年 11月25日（金）</td>
<td>61</td>
</tr>
<tr>
<td>質量分析講習会7-2</td>
<td>大阪大学</td>
<td>2022年 12月9日（金）</td>
<td>27</td>
</tr>
<tr>
<td>質量分析講習会8</td>
<td>大阪大学</td>
<td>2022年 12月14日（水）</td>
<td>25</td>
</tr>
<tr>
<td>第2回NMR構造解析講習会</td>
<td>鳥取大学</td>
<td>2022年 12月16日（金）</td>
<td>37</td>
</tr>
<tr>
<td>質量分析講習会7-3</td>
<td>大阪大学</td>
<td>2023年 1月11日（水）</td>
<td>29</td>
</tr>
<tr>
<td>NMR 実地講習</td>
<td>鳥取大学</td>
<td>2023年 1月19日（木）</td>
<td>28</td>
</tr>
<tr>
<td>第3回NMR構造解析講習会</td>
<td>鳥取大学</td>
<td>2022年 2月10日（金）</td>
<td>24</td>
</tr>
<tr>
<td>英語研修6</td>
<td>静岡大学</td>
<td>2022年 2月7日（火）</td>
<td>12</td>
</tr>
<tr>
<td>英語研修7</td>
<td>静岡大学</td>
<td>2022年 3月7日（火）</td>
<td>11</td>
</tr>
<tr>
<td>第4回NMR構造解析講習会</td>
<td>鳥取大学</td>
<td>2022年 3月17日（金）</td>
<td>27</td>
</tr>
</tbody>
</table>
5-5 マテリアル先端リサーチインフラ ARIM（文部科学省）

2021年度から文部科学省受託研究マテリアル先端リサーチインフラ（Advanced Research Infrastructure for Materials and Nanotechnology in Japan, ARIM）プログラムが始動した。先行事業であるナノテクノロジープラットフォームで培った、全国的な最先端共用設備体制と高度な技術支援提供体制に加え、リモート化・自動化・ハイスループット化された先端設備を導入し、設備共用を継続すると共に、新たに創出されるマテリアルデータを、利活用しやすい構造化された形で収集・蓄積していくことを主たる目的とした事業である。分子科学研究所はこのARIM事业の掲げる7つの重要技術領域のうち「マテリアルの高度循環のための技術」領域のスポーク機関と、2022年度からは同様に担当する機関横断技術領域「物質・材料合成プロセス」領域の責任機関として同事業運営機関に指名された。本事業では、機器センターが運営母体となり、計算科学研究センターに主としてDX関連業務を分担してもらう運営体制を構築した。「マテリアル高度循環」領域は、名古屋工業大学、電気通信大学とチームを構成し、4機関が有する先端機器の共用を通じて、代替材料や再生材料由来の物質合成、材料削減に資する触媒反応の可視化などマテリアル循環に関わる支援をするとともに、創出されたデータを効率よく収集・蓄積・構造化し、その活用を図ることで、サステナブルなマテリアルのデータ駆動型研究開発に貢献する。

2021年度は準備期間に位置付けられ、本事業の2020年度第3次補正予算によりデータ連携・遠隔作業機能付き電子スピン共鳴装置ならびにデータ積算サーバー等の導入がなされ、2021年度補正予算により超伝導量子干渉計（SQUID）の更新された。2022年度本事業補正予算でも単結晶X線構造解析有機合成システムの導入が認められ、2023年度末から稼働予定である。2022年度からは、ナノプラットフォーム実施機関の大部分が本事業のスポーク機関に移行し、実施担当者50名規模を加え、本格的に本事業が始動された。また、2022年度には、微粒化・高度化・自動化化等を進める体制を構築しつつあるところである。

表1は2022年度の支援装置・プログラム一覧、表2は2022年度の採択課題一覧、表3は2022年度採択・実施件数日数（2022年4月1日～2022年3月31日実施分）を示した。

![Table 1: 2022年度支援装置・プログラム一覧（分子科学研究所担当分）](attachment:image1.png)

![Table 2: 2022年度採択課題一覧](attachment:image2.png)

![Table 3: 2022年度採択・実施件数日数（2022年4月1日～2022年3月31日実施分）](attachment:image3.png)
3次元光学プロファイルシステム（Nexview）
3次元光学プロファイルシステム（ZYGO Nexview）は、非接触で表面の3次元形状測定。画面粗さ測定を行う装置。つなが合わせ機能により□46.5 mm範囲の3次元形状測定や、Ra0.1nm以下の超精密研磨面の測定、透明膜の厚さ測定（1μm以上）などが可能。X-Yステージ可動範囲200 mm×200 mm。

【精密温度調整機能付クリーンブース】

電子ビーム描画装置
データ提供の可否 可の場合データ情報の内容を簡単に提供できるデータは加速電圧、ビーム電流、エリアドوز（レジスト感度）となる。

【エリオニクス製 ELS-G100 最大加速電圧: 100 kV, 最小ビーム径: 1.8 m, 最小描画線幅: 6 nm】

低真空分析走査電子顕微鏡
幅広い試料に対する、SEM観察とEDS元素分析の環境を提供。SEM本体は、日立ハイテクノロジーサプライ SU6600。10~300Paの低真空観察に対応し、観察が良好な状態で可視化される。分解能、高真空1.2 nm（30 kV）、低真空2.0 nm（30 kV）。EDS分析装置は、BrukerAXS社製XFlash5060FOQ及びXFlash610。表面凹凸の影響が少なく高感度なEDS検出器を搭載。温度を-20℃程度で変えられるステージも利用可能。

【日立ハイテクノロジーサプライ_SU6600, BrukerAXS_QUANTAX XFlash 5060FO+XFlash610 コンバインシステム】

電界放出形透過電子顕微鏡
高輝度で高い干渉性の電子線が得られるフィールドエミッション電子ビーム（FEG）を搭載した電子顕微鏡。ナノスケールオーダーの高解析能の像観察や分析が可能。エネルギー分散型X線分析装置（EDS）による微細部の分析。原子数マップを測定可能。

【JEOL JSM-2100F（試料3 mm φ以内）】

走査プローブ顕微鏡
形状測定、機械特性測定、電気特性測定、ケルビンプローブ測定に特化した走査プローブ顕微鏡を用いた共同研究が可能。

【Bruker Dimension XR Icon NanoElectrical】

電気化学測定に特化した走査プローブ顕微鏡を用いた共同研究が可能。

【Bruker Dimension XR Icon NanoElectrochemical】

単結晶X線回折
単結晶試料にX線を入射すると、結晶構造を反映した回折点が得られる。この回折点の位置および強度から、結晶構造解析が行われる。構造解析により、原子の三次元座標（立体構造）や原子間距離・結合距離、三次元の電子密度などの情報が得られる。数十~数百mmサイズの単結晶試料が作成出来れば、3時間程度で測定・解析が可能。

【Rigaku_MERCURY CCD-1・R-AXIS IV, MERCURY CCD-2】
<p>| 単結晶X線回折（微小結晶用） | 高輝度X線：光学系にコフォーカルミラーを用いており、CCD-1, -2に比べ、約10倍の高輝度X線ビームが得られ、測定が難しかった微小結晶でも測定が可能。ビーム径は0.1～0.2 mmで、コリメータはパックグラウンド低減のためビーム径よりやや大きい0.3mmのものが取付。低温測定：ガス吹き付け型の冷却装置で、到達温度はN₂ガスモードで100 K, Heガスモードで24 K（実測）。到達時間は、N₂で240分、Heで150分かかる。運転モードの切り替えは、HeからN₂には迅速に切り替え可能だが、N₂からHeの場合は、冷凍機を一旦室温に戻す必要。 [Rigaku_HyPix-AFC] | 橫山利彦センター長間野芳則技術員 | 機器センター |</p>
<table>
<thead>
<tr>
<th>電子スピン共鳴（E680）</th>
<th>電子スピンの分布や相互作用、ダイナミクスの解析支援。Bruker社製E680では、通常のX-band CW-ESR以外にも、多周波数（Q, W-band）、多種測定（パルス、多重共鳴）が可能。[Bruker_E680]</th>
<th>橫山利彦センター長</th>
<th>機器センター</th>
</tr>
</thead>
<tbody>
<tr>
<td>電子スピン共鳴（EMX Plus, E500, E580）</td>
<td>電子スピン共鳴（ESR）装置は、不対電子（電子スピン）をプローブとした分光装置。静磁場中に置かれた電子スピンはエネルギー準位が分裂し、一定のマイクロ波を加えながら静磁場を掃引すると、このエネルギー差に相当する磁場で共鳴が起こる。この共鳴磁場や吸収強度などの観測から、電子スピンを持つ原子や分子の量、構造、電子状態などを推定する情報が得られる。ESR装置は、有機ラジカルや遷移金属などを含む物質の物理性質に関する情報研究の他にも、放射線や酸化などの影響を受ける不対電子生じた岩石や食品の評価、触媒や重合反応などのプロセス追跡にも利用。[Bruker_EMX Plus, E500, E580]</td>
<td>横山利彦センター長、中村敏和チームリーダー</td>
<td>機器センター</td>
</tr>
<tr>
<td>SQUID型磁化測定装置</td>
<td>SQUID型磁化測定装置（Quantum Design社製MPMS-7, MPMS-XL7）により、高感度磁化測定が可能。DC測定に加え、AC測定や光照射・圧力下の測定も可能。他の、超低磁場や角度回転オプションも利用可能。[Quantum Design_MCMS,MPSX-7, MPMS-3]</td>
<td>横山利彦センター長</td>
<td>機器センター</td>
</tr>
<tr>
<td>熱分析装置（固体、粉末）</td>
<td>熱分析装置では物質の温度制御しながら、その熱変化などを測定する。示差走査型カロリメーター（DSC）による分子の構造変化時の熱変化を直接測定する方法や、等温滴定型カロリメーター（ITC）による分子間の結合時の熱変化を直接測定する方法などが可能。[MicroCal_VP-DSC]</td>
<td>横山利彦センター長、藤原基靖主任技術員</td>
<td>機器センター</td>
</tr>
<tr>
<td>等温滴定型カロリメーター（溶液）</td>
<td>熱分析装置では物質の温度制御しながら、その熱変化などを測定する。示差走査型カロリメーター（DSC）による分子の構造変化時の熱変化を直接測定する方法や、等温滴定型カロリメーター（ITC）による分子間の結合時の熱変化を直接測定する方法などが可能。温度一定下の条件下において、リガンド滴下により2種の分子が相互作用する時に生じる反応熱を測定する。溶液中の生体高分子に特化した仕様。[MicroCal_PEAQ-ITC, ITC200]</td>
<td>横山利彦センター長、長尾春代技術員</td>
<td>機器センター</td>
</tr>
<tr>
<td>MALDI-TOF質量分析</td>
<td>イオン化法はマトリックス支援レーザー脱離イオン化（MALDI）、質量分析器は飛行時間型の質量分析器（TOF-MS）。MALDIはマトリックスと呼ばれるイオン化を促進する試薬を試料と共有するプラット上に結合させ、そこにレーザー光を照射する。マトリックスはレーザー波長に対して吸収を持っているので急速に加熱され、試料と共に気化。試料は気相反応（プロトン移動など）によってイオン化し、TOF-MSで呼ばれるイオン源で発生したイオンがフライチューブ内を飛行し検出器まで到達する時間によって質量を測定する装置により分離、検出。MALDIによるイオン化は総合で試料分子の分解が起こることなく、TOF-MSは分子量が数万〜数十万のチタン二酸イオンのような高分子を測定することが可能であり、発生したイオンの大部分が検出器に到達するため熱変換は小さい点が挙げられる。[BrukerDaltonics_microflex LRF]</td>
<td>横山利彦センター長、藤原基靖主任技術員</td>
<td>機器センター</td>
</tr>
</tbody>
</table>

106 異種事業
顕微ラマン分光とは、顕微鏡を用いたラマン分光による分子構造、局所結晶構造の解析を支援する技術です。コンフォーカル光学系と冷却されたCCDを用いて、高空間分解能、高感度観測が可能。488 nmから785 nmまでの励起波長を選び、試料を冷却することも可能です。

FT-IR（遠赤外分光）は、FT-IR分光器を用いた遠赤外スペクトル測定を支援します。格子フォノン、分子ねじれ振動などの集団運動や分子間水素結合、配位結合等の弱い結合による光学モードを検出します。

蛍光分光では、蛍光を示す物質の光を照射し、その光を検出することで物質の発光スペクトルを測定します。観測側の分光器の波長を固定し、励起側の分光器の波長をスキャンすることで、発光スペクトルが得られます。逆に、励起側の分光器の波長を固定し、観測側の分光器の波長をスキャンする方法もあります。

紫外・可視・近赤外分光光度計は、物質がどの程度光を吸収するかを測定する装置です。透過率を測定し、ソフトウェアで計算により、吸光度を求め、物質の同定や性質、濃度測定が可能です。

絶対PL量子収率計は、物質に光を照射し、励起された電子が基底状態に戻る際の発光を測定することで、物質の発光スペクトルを測定します。発光スペクトルの形から、物質の組成や構造を推定することができます。

円二色散計は、光学活性分子の立体構造や組成を解析するための装置です。光を光学活性な試料に照射し、その吸収を測定することで、光学活性度を表すが、偏光の不等吸収を測定します。

ピコ秒レーザーは、非常に短いパルスを発生させることで、物質の瞬間的な反応を観察することが可能です。これにより、物質の内部構造や反応を詳細に観察することが可能となります。

機器センター：機器センター
<table>
<thead>
<tr>
<th>合成ものづくり支援（大規模量子化学計算）</th>
<th>機能性ナノ分子の励起状態やナノ電子制御の応用に対する電子状態計算。</th>
</tr>
</thead>
<tbody>
<tr>
<td>合成ものづくり支援（有機 FET）</td>
<td>分子性伝導体や有機分子を用いたトランジスターの作製・評価を支援。電気分解による单結晶成長,レーザー加工によるデバイス作製,低温・磁場下における導電特性測定および顕微反射赤外による性質の評価が可能。</td>
</tr>
<tr>
<td>合成ものづくり支援（有機合成 DX）</td>
<td>自動および手動によるバッチ型反応実験,ならびに,AIやDFT計算によるデータ解析を行い,有機合成分野のデータ化を支援。</td>
</tr>
<tr>
<td>合成ものづくり支援（磁性薄膜作製評価）</td>
<td>超高真空下での磁性薄膜作成,紫外光 Kerr 効果による評価,ならびに,紫外レーザー磁気円二色性光電子顕微鏡 (UV MCD PEEM) による磁性薄膜構造評価を実施。</td>
</tr>
<tr>
<td>合成ものづくり支援（金属錯体）</td>
<td>金属錯体の設計,合成,構造解析および物性評価を支援。光学特性および磁気特性の評価が可能。</td>
</tr>
<tr>
<td>合成ものづくり支援（機器センター長協力研究）</td>
<td>機器センター以外の分子研施設利用を実施する際,機器センター機器（所内専用機器を含む）を活用するためにの支援</td>
</tr>
</tbody>
</table>
表2 2022年度（令和4年度）採択課題一覧 分子科学研究科担当分（2023年3月31日現在）

(1) 協力研究

<table>
<thead>
<tr>
<th>課題名</th>
<th>支援機器等</th>
<th>代表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>パルスESR 法を用いた高LET放射線照射で生成するアラニルラジカルの局所的ラジカル分離の評価</td>
<td>E680</td>
<td>東京都立産業技術研究センター 中川 清子</td>
</tr>
<tr>
<td>濃厚電解質から生成する電極被膜構造のin situ解析</td>
<td>PSM</td>
<td>名古屋工業大学大学院工学研究科 本林 健太</td>
</tr>
<tr>
<td>高移動度有機半導体の完全なバンド構造の決定</td>
<td>ARUPS</td>
<td>千葉大学大学院工学研究院 吉田 弘幸</td>
</tr>
<tr>
<td>超伝導体/磁性体/半導体複合材料の電子バンド構造解析</td>
<td>ARUPS</td>
<td>神戸大学大学院理学研究科 内野 隆司</td>
</tr>
<tr>
<td>石英ガラス上に形成するナノ水滴の粘弾性計測</td>
<td>PSM</td>
<td>金沢大学先端理工学研究科 荒木 優希</td>
</tr>
<tr>
<td>ダイヤモンド中における常温常圧の NVセンサーへのデコヒーレンス効果の研究</td>
<td>E680</td>
<td>物質・材料研究所機能科学調査研究グループ 研究拠点</td>
</tr>
<tr>
<td>多形により機械的柔軟性が異なる錯体分子結晶の結晶表面表面の観察と機械特性の評価</td>
<td>SPM</td>
<td>東京大学理工学部 萩原 宏明</td>
</tr>
<tr>
<td>原子間力顕微鏡を用いた溶液中での局所的評価</td>
<td>SPM</td>
<td>神戸大学大学院理学研究科 大西 洋</td>
</tr>
<tr>
<td>応答性分子のシミクロン解析による著効果の解明</td>
<td>量子計算</td>
<td>新居浜工業高等専門学校 高見 靖香</td>
</tr>
<tr>
<td>光起電効果を利用した有機半導体の完全な電子バンド構造解析</td>
<td>E680</td>
<td>九州大学大学院工学研究院 梅井 勃浩</td>
</tr>
<tr>
<td>濃厚電解質が形成する電極被膜構造のin situ解析</td>
<td>金属錯体</td>
<td>龍谷大学先端理工学研究科 服部 陽平</td>
</tr>
<tr>
<td>バルスESRを用いた電子密度の計測</td>
<td>SPM</td>
<td>東京大学農学生命科学研究科 前田 公憲</td>
</tr>
<tr>
<td>光電流タングステン酸化物の構造解析</td>
<td>有機FET</td>
<td>名古屋大学大学院工学研究科 石川 春人</td>
</tr>
<tr>
<td>結晶性半導体における活性酸素の生成と反応の影響</td>
<td>量子計算</td>
<td>静岡大学理学部物理学科 広部 大地</td>
</tr>
<tr>
<td>固体NMRによるクマムシ由来タンパク質の構造解析</td>
<td>600NMR 固体</td>
<td>東京工業大学理学研究科 白樋 眞</td>
</tr>
<tr>
<td>有機結晶表面に作成した電解質トランジスタと印加電圧を用いた新しい物性探索</td>
<td>有機合成</td>
<td>九州大学大学院理学研究科 大鶴 孝志</td>
</tr>
<tr>
<td>キャリア積分の電導性を有する結晶の電導性評価</td>
<td>有機合成、DX</td>
<td>大阪工業大学大学院工学研究科 野川 幸次</td>
</tr>
<tr>
<td>コラムレニンの変異体の構造と活性に関する量子化学計算</td>
<td>量子計算</td>
<td>名古屋大学大学院理学研究科 山田美穂子</td>
</tr>
<tr>
<td>バルスESRを用いたスピン間距離測定による輸送膜タンパク質の構造解析</td>
<td>E680</td>
<td>神戸大学大学院理学研究科 木村 菩智</td>
</tr>
<tr>
<td>光電流タングステン酸化物の構造解析</td>
<td>SAXS</td>
<td>東京大学大学院理学研究科 石川 春人</td>
</tr>
<tr>
<td>結晶性半導体における活性酸素の生成と反応の影響</td>
<td>量子計算</td>
<td>静岡大学理学部物理学科 広部 大地</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>600NMR 固体</td>
<td>名古屋大学大学院工学研究科 矢木 眞</td>
</tr>
<tr>
<td>有機結晶表面に作成した電解質トランジスタと印加電圧を用いた新しい物理探索</td>
<td>SAXS</td>
<td>廣島大学理学部物理学科 吉川 真</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>PSM</td>
<td>金沢大学先端理工学研究科 荒木 優希</td>
</tr>
<tr>
<td>有機結晶表面に作成した電解質トランジスタと印加電圧を用いた新しい物理探索</td>
<td>TEM</td>
<td>東京大学物性研究所 戸川 克也</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>EMX</td>
<td>東京工業大学大学院工学研究科 和田 秀也</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>SPM</td>
<td>海洋研究開発機構イノベート研究所 伊藤 元雄</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>E680</td>
<td>東京工業大学大学院理学研究科 星野 翔太</td>
</tr>
<tr>
<td>固体NMRにおけるクマムシ由来タンパク質SAHSの乾燥状態の構造解析</td>
<td>EMX</td>
<td>東京工業大学大学院理学研究科 岡田 智</td>
</tr>
</tbody>
</table>

(2) 施設利用

<table>
<thead>
<tr>
<th>課題名</th>
<th>支援機器等</th>
<th>代表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>カーボンナノチューブの生成メカニズムの解明</td>
<td>TEM</td>
<td>名城大学理工学部 福田 慎治</td>
</tr>
<tr>
<td>新規オリゴマー型有機伝導体の開発と伝導機構の解明</td>
<td>EMX E500</td>
<td>東京大学理工学部 小野浦健夫</td>
</tr>
<tr>
<td>人工ニッケルクラスターへの部材特性の異変によるタングステン体積構造と物性評価の調査</td>
<td>円二色性</td>
<td>埼玉大学大学院理学研究科 藤野 元史</td>
</tr>
<tr>
<td>EPRによる2つの[Fe2-Fe]クラスターから[Fe3-Fe]クラスターへの構造変換反応の説明</td>
<td>EMX E500 E380</td>
<td>埼玉大学大学院理学研究科 藤野 元史</td>
</tr>
</tbody>
</table>

各種事業 109
電子スピン共鳴による酵素の構造学的研究
SuNi 多層膜の電気伝導特性, Cu-ZnO ナノロッドの磁気的性質の解明
Interaction of Polymers with Lipids
高周波 ESR による Bilayer 型分子磁性体の磁気特性機構の解明
人工光合成をめざす半導体光触媒の水中 ESR 測定
逆ペロブスカイト型マンガン窒化物における特異な磁気特性の解明
複合酸化物触媒, 及び電極触媒の表面構造解析
多元素ハッカ塩の磁性 IV
Zr-Mo クラスターを含む微細結晶における水素結合ネットワークと磁気的性質
ナノ磁性微粒子, 及び磁性体ナノ周期構造を利用した新規磁気光学材料の開発
遷移金属で置換したゼオライト粒子の磁気特性の解明
常磁性異種金属一次元鎖錯体と二次元状混合原子価集積体の合成と磁気物性
超伝導／強磁性／半導体ナノ複合材料の超伝導近接効果
常温常圧で機能する高活性窒素固定触媒の開発
多周波 EPR 法による光合成タンパク質の構造及び機能の解析
コラーゲンの構造物性と抗体との分子間相互作用解析
光エネルギー変換物質の励起状態の研究
スピン依存的な光化学特性を示す開殻電子系の創製
β シート性ペプチド錯体の熱力学特性の評価
無脊椎動物の生殖腺刺激ホルモンペプチドの探索と解析
半導体量子ドット三次元超格子の構築・電子状態解析
自己組織化によるカーボンナノチューブの自在配列手法の構築
フラビンタンパク質の光誘起ラジカルペア生成に関する人工システムの構築
新規配位高分子錯体の合成と磁気的性質に関する研究
有機分子の自己組織化に基づく新規有機•無機ハイブリッドナノ構造の開発
ペアロコミズム及びエレクトロロコミズム特性を示すパドルホイール型ロジウム二核錯体の開発
ポリオキソメタレートの酸化還元反応メカニズムの定量的解析
β-(BEDT-TTF)$_2$X$_2$H$_2$SO$_4$ (X = Cl, Br) における Raman 分光による BEDT-TTF の価数決定
金属酵素モデル錯体の電子構造の研究
スピン転移とサーキュリエント特性が連動する錯体分子結晶のアルキル置換基効果の解明
ポリオキソメタレートを骨格として持つ金属錯体の磁気物性
多段階電子移動による高効率光電変換実現に向けたAIN・ペンドギャップ中電子状態の解明
金属錯体の時間分解 ESR による光励起構造の解明
InP 系コアシフェル型ナノ結晶の界面ポテンシャルが及ぼす励起子過程での影響
光のエネルギーを蓄えることができる物質の光励起状態と緩和過程の電子スピン共鳴
種々のKI結晶中に生成したAgIナノ結晶の電子顕微鏡観察

MALDI 基礎生物学研究所 大野 熹
オペランド 紫外可視近赤外 名古屋工業大学大学院工学研究科 滑中 泰
SEM 早稲田大学理工学術院
TEM 早稲田大学理工学術院 安倍 悠朗
SEM 広島大学先端理工系科学研究科 岡 方美
SEM 城西学院大学海洋電子機械工学科 藤田 渉
SEM 東京海洋大学海洋電子機械工学科 藤田 渉

EMX 関西学院大学生命環境学部 増尾 賢弘
EMX 東京大学大学院理学研究科 环 広樹
EMX 奈良女子大学大学院自然科学系 藤井 浩
EMX 高知大学教育学部 萩原 宏明

EMX 日本大学文理学部 石崎 聡晴
EMX 京都工芸繊維大学電気電子工学科 今田 早紀
EMX 群馬大学大学院理工学府 浅野 素子
EMX 関西学院大学理工学部 江口 大地

EMX 愛媛大学大学院理工学研究科 内藤 俊雄
EMX 大阪公立大学大学院理学研究科 河相 武利

ccd-1 粉末X線 600nmR 溶液 埼玉大学教育学部 萩原 宏明
ccd-1 CCD-2 紫外可視近赤外 MS-7 MS-7 XL7 極めて高分解率 ESCA ラマン 高知大学教育学部 上田 忠治
ccd-1 紫外可視近赤外 MS-7 CCD-2 CCD-1 EMX E500 E580 MS-7 XL7 極めて高分解率 TEM マルマン 高知大学教育学部 上田 忠治
ccd-1 CCD-2 紫外可視近赤外 MS-7 CCD-2 TEM マルマン 高知大学教育学部 上田 忠治
ccd-1 CCD-2 紫外可視近赤外 MS-7 TEM マルマン 高知大学教育学部 上田 忠治
ccd-1 CCD-2 紫外可視近赤外 MS-7 TEM マルマン 高知大学教育学部 上田 忠治
ccd-1 CCD-2 紫外可視近赤外 MS-7 CCD-2 TEM マルマン 高知大学教育学部 上田 忠治
ccd-1 CCD-2 紫外可視近赤外 MS-7 TEM マルマン 高知大学教育学部 上田 忠治
各種事業

触媒機能をもつ遷移金属錯体の遠赤外スペクトルによる金属ハロゲン結合の分析

ナノサイズ発光バイオマーカーの新規開発と細胞標識への展開

X線結晶構造解析による新規合成有機化合物の構造決定

ドープ型PEDOTの単結晶ORIGOMODELの磁性における磁系拡張効果

バレー自由度をもつ光注入口キャリアの磁場下マイクロ波共鳴によるダイナミクス研究

鉄含有ペロブスカイト型酸化物の酸素放出挙動と結晶構造変化の相関解明

キラリティを有する分子性導体の物性研究

新奇レーザーセラミックスの作製プロセスに関する学術基盤構築

三重項状態アントラキノン誘導体の磁気パラメーターの決定

金属ドープ型BiFeO₃ナノ粒子の磁性に関する研究

キラリティを有する分子性導体の物性研究

E850イメージングユニットを利用した低温プラズママテリアルイコンフォマティクス

液相合成法を用いたダイヤモンド様炭素膜の作製

二酸化炭素還元を指向した金属錯体の合成と構造解析

生体に含まれる脂質分析のための脂質NMR情報の収集

炭化水素中でのレーザー照射による金属表面への硬質炭化物被膜形成

エネルギー変換への応用のためのナノマテリアル薄膜の構造および物性評価

有機π電子系化合物を成分とする有機電子材料の構造と物性

キラリティを有する分子性導体の物性研究

岡山大学大学院自然科学研究科 押木 俊之

名城大学理工学部 西山 桂

豊橋技術科学大学応用化学・生産学系 藤沢 郁美

東京大学物性研究所 藤野 智子

和歌山大学システム工学部 秋元 郁子

筑波大学教育研究部 藤代 史

広島大学大学院先端理工学系 井上 克也

理化学研究所 平等 拓範

埼玉大学大学院理工学研究科 長崎 宏樹

山形大学大学院理工学研究科 有馬ポールアハラ

福井大学学術研究院工学系部門 内藤 順也

名古屋大学低温プラズマ科学研究センター 石川 健治

大同大学電気電子工学科 橋本 雄一

名城大学理工学部 永田 央

名古屋工業大学大学院工学研究科 小野 賢吾

名古屋工業大学先端セラミックス研究センター 安達 信泰

法政大学生命科学部 緒方 啓典

愛媛大学大学院理工学研究科 白旗 崇

愛媛大学大学院理工学研究科 藤崎 真広
ドナー・アクセプター型光誘起複合機能物質群のメカニズム解明

金および Sr ナノ粒子集合体の光学特性の解明

ポルフィリンを主骨格とする DA タイプ COF の光誘起時間分解 ESR 研究

ESR を用いた新規 Ag クラスターの組成並びに電子状態研究

有機伝導体β-(BEDT-TTF)_2Hg(SCN)_2Cl の低温電荷秩序状態の構造の解明

非イオン型 COF とポルフィリンを主骨格とする新規有機物質の光電流特性

超微粒子不均化活性を有する金属-有機構造体触媒の電子状態評価

多層酸化膜含有二重膜表面で誘起されるアミドイドβ会合状態の固体 NMR を用いた構造解析

アドバンスド ESR 法による植物性食品による環境計測

強い水素結合相互作用をもつ新規分子性伝導体の合成と物性研究

有機色素の光学特性に関する研究

バリウム黒鉛層間化合物の磁化率

ハイブリッド光触媒における Ag 担持効果の解明

金属相と超伝導相の境界に位置する β-型 BEDT-TTF 塩の格子揺らぎの探索

超薄層半導体光触媒の透過電子顕微鏡による計測評価

二電子型 3D 型 Fe(II) 錠体によるマテリアル化電反応の中間体および活性種の確

イオン液体のコンフォメーションと非対称性アニオン効果

電子供与基を有するチオールを配位させた非平面ポルフィリン Fe(II) 錠体の磁気的性質

ヘム-カルコゲナート錯体の物性・化学研究

6-chloro-2,4-dinitroaniline 会合体の特異な光反応過程の研究

逆分子ふるい効果に連動した発光特性変化を示す金属錯体格子の励起状態ダイナミクス

金属酸化物のナノレベル構造解析

放射線照射されたアルミニウムのラジカル数の定量

ポリ N-イソプロピルアクリルアミドのダイマー水溶液の温度誘起型相分離現象の解明

強磁性/反強磁性分子間相互作用をもつ Galvinoxyl Radical 的低温相の構造決定

Ca 結合型光合成タンパク質における耐熱化メカニズムの解明

シグナル伝達に伴うペプチド型人工細胞組織の集団挙動発現

巨大中空錯体に内包されたタンパク質の構造解析

有機-無機界面磁気結合を利用した原子層物質の磁気状態制御

各種事業
XMCDを用いたβ-Mn型カイラル磁性体Fe$_2$PdMo$_3$NおよびCo$_2$PdMo$_3$Nエピタキシャル薄膜における磁気状態の研究
磁性ヘテロ薄膜構造の磁化方向制御に関する研究

フラーレン誘導体LB薄膜の表面観察と光電気化学測定
分裂酵母ライブイメージングとデバイス内部からの選択的回収

界面選択性の振動分光を実現するナノ構造電極基板の開発
マクロ流体デバイスを用いた植物の成長解析
がん細胞特異的結合分子探索効率を向上させるマイクロ流路デバイスの開発
キラリティ検出デバイスの作製

FL-02製イマージョン回折格子の形状・表面粗さ測定
a反跳トラックの密度測定による白雲母の年代推定
昆虫の発音器官の構造評価

(3) 所内利用

<table>
<thead>
<tr>
<th>課題名</th>
<th>支援機器等</th>
<th>代表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>開発分子性物質の創製と機能創出</td>
<td>低SEM</td>
<td>生命・錯体分子科学研究領域 草本 哲郎</td>
</tr>
<tr>
<td></td>
<td>CCD-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCD-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>微小結晶粉末X線ESCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E580</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XL7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱解析MALDI-TOFラマン</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>紫外分光赤外可視近赤外量子収率円二色性</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCD-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCD-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>微小結晶粉末X線ESCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E580</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XL7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VP-DSCPEAQ-ITCiTC200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱解析MALDIラマンFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>紫外分光赤外可視近赤外</td>
<td></td>
</tr>
</tbody>
</table>

X線溶液散乱法およびX線単結晶回折法による生体分子の構造解析
周期的3次元有機構造体の創製

協奏分子システム研究センター 秋山 修志
生命・錯体分子科学研究領域 瀬川 泰知
| 分子性伝導体の電子物性研究 | 赤外
量子収率
円二色性
ビコ秒
600NMR溶液
| 機器センター | 中村 敏和 |
| 分子と対称性を用いた新奇機能性の創出 | SEM
低温SEM
TEM
円二色性
赤外
量子収率
ビコ秒
| 協奏分子システム研究センター | 佐藤 拓朗 |
| 紫外可視近赤外
量子収率
円二色性
ビコ秒
| 金属センサータンパク質のNMR構造研究 | 600NMR溶液
円二色性
| 生命創成探究センター | 村木 則文 |
| 有機分子変換を駆動・制御する新しい反応システムの構築 | TEM
MALDI
| 生命・錯体分子科学研究領域 | 奥村慎太郎 |
| 電極と電解質の表面や界面で起きる現象の解析 | 走査プローブ
顕微鏡
| 湊 丈俊 |
| 有機材料のケルビンプローブ顕微鏡観察 | 走査プローブ
顕微鏡
| 物質分子科学研究領域 | 平本 昌宏 |
| 生命分子システムの動的秩序形成と高次機能発現の仕組みの探究 | VP-DSC
MALDI
TOF-MS
iTC200
| 生命創成探究センター | 加藤 晃一 |
| 新規有機分子の合成と構造決定 | 600NMR溶液
円二色性
| 生命・錯体分子科学研究領域 | 三橋 隆章 |
| 超分子化学のツールを用いたタンパク質の構造・機能に関する研究 | 微小結晶
MALDI-TOF
| 特別研究部門 | 三橋 隆章 |
各種事業

有機材料局所伝導度測定

ヒドリドの物質研究

新規高分子の表面解析

非常に鋭利な先端形状をもつ STM 用金属探針の開発

EB 描画による Cr パターンの組成分析

天然および人工高分子分解酵素の機能解析

分子と対称性に基づいた新奇機能性デバイス作成

エネルギー材料の物性解析

−タンパク質赤外振動分光のための AFM 試料観察

Fabrication of Plasmonic Chiral Nanostructure

装置開発室

特別研究部門

協奏分子システム研究センター 佐藤 拓朗

協奏分子システム研究センター 木村 幸代

協奏分子システム研究センター 佐藤 拓朗

協奏分子システム研究センター 西田 純

協奏分子システム研究センター Hyo-Yong Ahn
合成した光触媒の粒子の分析
AFM 波中電気化学電極評価
遷移属酸化水素物 BaTiO_{3-x}H_x の特性解析
X 線反射率による多層膜構造評価
宝石型構造を持つ水素化物の結晶相定
溶液光学反応の効起ダイナミクスの研究

各種事業

低 SEM 物質分子科学研究領域 斎藤 晃
低 SEM 機器センター 中本 圭一
ラマン 物質分子科学研究領域 内村 祐
オペランド 物質分子科学研究領域 山本 健平
オペランド 物質分子科学研究領域 岡 善貴
蛍光分光 光分子科学研究領域 長坂 将成
赤外可視 光分子科学研究領域 斎藤 晃

スパッタリング法で得られた薄膜の膜厚測定
結晶の表面粗さ評価
UVSOR 代行実験のためのグローブボックス利用
電極表面の微細反応メカニズムを解明するための表面観察
Comparison of Surface Roughness Profile
有機分子薄膜の表面構造研究
ビームスポットの深さ測定
金属センサー 導入試験の検討

有機合成反応のデジタル化に向けたデータ収集
固体 NMR による 2 次元および 3 次元共有結合構造体の構造解析

(4) 非公開利用

マテリアル先端リサーチインフラ事業では、民間等の非公開利用も通常の公開利用を大きく圧迫しない条件で積極的に受入れている。2022 年度は 600MHz 溶液 1 件，低 SEM 1 件，ラマン 1 件が採択された。業種別内訳は大企業 2 件，その他 1 件であった。

表 3 2022 年度（令和 4 年度）利用件数一覧（2022 年 4 月～2023 年 3 月）

<table>
<thead>
<tr>
<th></th>
<th>協力研究</th>
<th>施設利用</th>
<th>所内利用</th>
<th>非公開利用</th>
</tr>
</thead>
<tbody>
<tr>
<td>採択件数</td>
<td>33</td>
<td>101</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>実施件数</td>
<td>31</td>
<td>96</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>実施日数</td>
<td>793</td>
<td>1615</td>
<td>1276</td>
<td>12</td>
</tr>
</tbody>
</table>

マテリアル先端リサーチインフラ事業では、同一申請者から前期後期に別々に申請があっても通年申請と読み替え 1 件と数える。研究課題が変わっても同一申請者の申請は年間 1 件とする。
各種事業

分子科学研究所は、創設以来、多くの国際共同事業を主催するとともに、外国人客員教授を始めとする優れた外国人研究者を計画的に受入れて国際共同研究を推進し、国際的に開かれた研究所として内外から高い評価を得ている。近年、科学研究のグローバル化が急速に進むとともに、インドや東南アジアを含む広い意味での東アジア地区の科学研究も欧米に遅れず、かつ、21世紀にふさわしい新たな国際共同研究拠点を構築していくことが求められている。このような状況の中、2004年度の法人化の機会に分子科学重点分野を定めて国際共同研究の輪を広げる試みを開始し、その後、日本学術振興会、JENESYS（外務省）、JASSO（日本学生支援機構）、総合研究大学院大学等の各種支援も受けながら、自然科学研究機構・国際学術拠点形成事業や分子科学アジアコア多国間国際共同事業などを実施し、欧米及びアジア地区での国際連携を強化してきた。さらにアジア拠点と欧米ネットワークを有機的に接続することによって、アジアと欧米を区別することなくグローバルな研究活性化と新しいサイエンスの出現が期待されており、今後、その方向に向けて分子科学研究所が活動していく必要がある。

そこで、2012年度に国際共同の在り方を大きく見直し、2013年から外国人研究者に関わる諸手続や涉外事務を担当する専門員（現在はURA）を雇用し、国際的に分子科学研究所の存在感を示せるようなシステム作りを始めている。現在、どのような財源を利用して国際共同を活性化しているか、それぞれの財源の制約に合わせた国際共同研究事業を個別に行うのではなく、分子科学研究所として自由度の高い国際共同研究体制をアジアと欧米を区別することなくグローバルに構築しながら各種財源を混合して実施するように工夫している。なお、ここでは3章に記述のある岡崎コンファレンス、ミニアイト国際シンポジウム、アジア連携分子研究会、総研大アジア冬の学校、外国人客員教授については触れない（以下の国際共同研究事業の財源を一部使っているものもある）。

5-6 分子科学国際共同研究拠点の形成

分子科学研究所は、創設以来、多くの国際共同事業を主催するとともに、外国人客員教授を始めとする優れた外国人研究者を計画的に受入れて国際共同研究を推進し、国際的に開かれた研究所として内外から高い評価を得ている。近年、科学研究のグローバル化が急速に進むとともに、インドや東南アジアを含む広い意味での東アジア地区の科学研究も欧米追従ばかりでなく活性化しており、分子科学研究所においても、21世紀にふさわしい新たな国際共同研究拠点を構築していくことが必要となっている。このような状況の中、2004年度の法人化の機会に分子科学重点分野を定めて国際共同研究の輪を広げる試みを開始し、その後、日本学術振興会、JENESYS（外務省）、JASSO（日本学生支援機構）、総合研究大学院大学等の各種支援も受けながら、自然科学研究機構・国際学術拠点形成事業や分子科学アジアコア多国間国際共同事業などを実施し、欧米及びアジア地区での国際連携を強化してきた。さらにアジア拠点と欧米ネットワークを有機的に接続することによって、アジアと欧米を区別することなくグローバルな研究活性化と新しいサイエンスの出現が期待されており、今後、その方向に向けて分子科学研究所が活動していく必要がある。

そこで、2012年度に国際共同の在り方を大きく見直し、2013年から外国人研究者に関わる諸手続や涉外事務を担当する専門員（現在はURA）を雇用し、国際的に分子科学研究所の存在感を示せるようなシステム作りを始めている。現在、どのような財源を利用して国際共同を活性化しているか、それぞれの財源の制約に合わせた国際共同研究事業を個別に行うのではなく、分子科学研究所として自由度の高い国際共同研究体制をアジアと欧米を区別することなくグローバルに構築しながら各種財源を混合して実施するように工夫している。なお、ここでは3章に記述のある岡崎コンファレンス、ミニアイト国際シンポジウム、アジア連携分子研究会、総研大アジア冬の学校、外国人客員教授については触れない（以下の国際共同研究事業の財源を一部使っているものもある）。

5-6-1 国際共同研究事業の財源

(1) 自然科学研究機構「戦略的国際研究交流加速事業」

本事業は、各機関が第4期中期計画の達成を見据え、競争力の高い海外の研究機関等との国際共同研究を発展させる、あるいは新たに開始するための人的相互交流を支援する。特に、各機関が国際共同研究の核となるための、優れた外国人研究者の招へい、将来の国際共同研究の核となる新たな研究者・大学院生の海外派遣及び海外からの受入れ、海外の先駆的研究者と機構所属の若手研究者の交流、等を推奨する。これにより、持続性のある国際交流関係を構築・強化し、機構における研究の国際競争力の向上を目指す。

【タイプB】各分野の将来を担う国際的な若手研究者の育成

海外の研究機関等との間で、若手研究者（ポストドク・大学院生を含む）を受け入れ派遣することにより、中長期的に持続的な国際交流関係構築・強化するための戦略的取り組み。

分子科学研究所として「東南アジア地域の分子科学分野の将来を担う国際的な若手研究者の育成（2022）」が採択。アジアを相手とするIMS-IIPA（Institute for Molecular Science International Internship Program in Asia）事業や共同研究支援。

(2) 自然科学研究機構「ネットワーク型研究加速事業」

自然科学分野において、国内外の大学や研究機関との幅広い連携による共同研究を推進し、異分野連携による新たな学問分野の開拓や、自然現象シミュレーションや新技術の開発を生かした創造的研究活動を推進する、国際的にも評価される機関間連携ネットワークを構築し、分野融合型・国際的共同利用・共同研究拠点を形成することを目的とする（5-7参照）。
各種事業

119

【分野融合ネットワーク型研究加速】
異分野の研究領域を持つ機関が連携・ネットワーク化を図ることにより、新たな学問分野を開拓する国際的にも評価される研究拠点形成を目指すもの

分子科学研究所として「対称性の破れに基づく分子科学の深化（2022）」が採択。
欧米との国際共同研究と、アジアを相手とする IMS-IIPA（Institute for Molecular Science International Internship Program in Asia）事業、共同研究等を支援。

(3) 総合研究大学院大学

【Ⅰ 新入生確保のための広報的事業】
2022年度は、アジアを相手とする IMS-IIPA事業の支援として、タイ、インド、マレーシアからインターンシップ生4名を招へい。また、マレーシアのマラヤ大学からの総研大アジア冬の学校参加者2名の支援を行った。

(4) 分子科学研究所経常経費
以上の(1)～(3)はそれぞれの枠組みでの種々の制約があり、運用できないものがあるため、研究所の経常経費から補填し運用している。例えば、半年以上滞在する外国人インターン生の支援は以上の枠組みでは困難なため、国内の特別共同利用研究員（以前の受託院生）に対するRA雇用と同基準での支援を行っている。

5-6-2 分子研国際インターンシッププログラム（IMS-IIP）
それぞれの外部資金に合うように別々に実施してきた、院生を主なターゲットにした研修生（インターン）制度を見直し、大きな枠組みで研究所が主導して実施する基幹プログラムとして位置付ける方向で2012年度に見直した。それ受けて2013年度より、分子研国際インターンシッププログラム（International Internship Program: IMS-IIP）として事業化し、共著論文を書けるまで滞在して研究することのできる目安として半年間前後の中長期の招へい計画を主な対象として実施している。なお、アジア分については次節に詳細を記述したが、IMS-IIPA（アジア版 IMS-IIP）と呼ぶことでアジア地区を重視した分子研独自のスカラシップがあるように見せた上で、提携研究機関・提携大学を中心に候補者の推薦を依頼している。なお、半年以上の研修生については国内分と同一の制度に基づき特別共同利用研究員（受託院生に相当する身分）として受入れるとともにRA雇用して給与を支払っている。半年以内の研修生については、国内での共同利用者に相当する国際協力研究員として滞在費の補助を行っている。外国人の場合、共同利用研究者宿舎の中長期利用が可能である。

欧米及びアジアの各提携研究機関・提携大学に候補者の推薦依頼をする際には、例えば、のべ12ヶ月・人という総枠を与え、数名の推薦を依頼する形を原則としている（のべ12ヶ月だと半年滞在者2名あるいは4ヶ月滞在者3名の推薦が可能。ただし、滞在は3ヶ月以上という条件を課す）。各提携先には、のべ何ヶ月・人、数名の総枠を与えるかは実績を判断しながら増減している。毎年、優秀な候補者（院生と若手研究者を合計して考える場合と若手研究者は別枠とする場合がある）を推薦してくれる機関がある。一方で、先方から推薦された者をそのまま受入れるのではなく、現地あるいはインターネットで面接選考をせざるを得ない提携先がある。特に、東南アジアでは、まだ、その段階にあるところが多い。

以上のような調整を継続しながら質の面でのレベルアップを図っているところであるが、量的な面でも、2013年度は31名、2014年度は39名、2015年度は69名、2016年度は53名、2017年度は60名、2018年度は65名、2019年度は53名、2021年度は2名にとどまっていたが、2022年度は、新型コロナウイルスによる入国制限が緩和したため26名の受入れが可能となった。
5-6-3 分子研アジア国際インターンシッププログラム（IMS-IIPA）

外務省のJENESYS事業、分子研のEXODASS事業を引き継ぐ形で2015年度よりIMS-IIPA事業として運用している。JENESYS事業、EXODASS事業の各種制限を解消し、欧米を相手に実績のあるIMS-IIP事業と同じ基準で実施するようになったので自由度が増した。今ではアジアと欧米を分ける意味もなくなりIMS-IIP事業として一括して扱っている。ただし、財源的には未だに区別が残っている。分子研はアジア地区で重点大学・拠点研究機関（タイのチュラロンコン大学・カセサート大学・NANOTEC・VISTEC、マレーシアのマラヤ大学、中国のアモイ大学、インドのIITKanpur、韓国科学技術院自然科学部、台湾の国立交通大学・中央研究院原子分子科学研究所等）を選び、MOUを直接、あるいは、総合研究大学院大学物理科学研究科を通して、締結しており、大学院生や若手研究者を一定期間招聘している。提携先拠点研究機関については、共同研究の有無を考慮しながら随時入れ替えを行っていく。大学院生の場合は原則として5〜6ヶ月、若手研究者の場合は1〜6ヶ月滞在し、ホスト研究室に所属して国際共同研究を担っている。分子研での研究を体験して、総研大への入学を希望する学生が毎年数名いるほか、分子研にポスドクとして戻ってくる学生もあり、分子研・総研大の研究力強化と国際化に寄与している。今後はダブルディグリー制度などとの組み合わせによって、さらに魅力的な制度となるよう改良していく予定である。

5-6-4 短期外国人研究者招へいプログラム

これまで分子科学研究所では、国内の共同利用研究者と同様、1、2週間程度の滞在（年通算では1ヶ月程度になるケースもある）で施設利用研究を実施する枠組みがなかった。そのため、短期外国人研究者招へいプログラムを設定し、中部国際空港を起点として、国内研究者と同様、分子科学研究所に滞在中の滞在費を支援することにした。海外の所属機関と中部国際空港の間の旅費については原則、支給しないが、財源によっては支給が前提のものもあるため、LCC等の利用によって国内旅費より低額になるケースなどで例外的に支給することもある。現在のところ、施設利用のすべてにおいて、直接、海外からの申請を認めていないわけではなく、UVSOR施設のように国際的に見て競争力のある設備を利用した研究に限られているため、欧米やアジアでも中国、韓国、台湾、インド、タイのような科学技術が進んでいる国の研究者を対象としている。なお、研究者に随行して共同研究に参加する院生はIMS-IIP事業の短期分として中長期分に合算してカウントすることにしている。

一方、国際協力研究については、海外からの直接申請ではなく、研究所内の教員による国際共同研究の提案を受け、所内委員による審査を経て①海外の教授、准教授クラスの研究者の短期招へい、②若手外国人研究者の短期招へいなどが「分子科学国際共同研究拠点の形成」の主要プログラムとして実施されていた。その実績は2008年度9件、2009年度12件、2010年度13件、2011年度13件、2012年度11件である。

2013年度より様々な財源をもとに短期外国人研究者招へいプログラムを始めるで、従来の国際協力研究に加え、国際施設利用（協力研究的であり、単なる設備利用はない）にも拡大した結果、2013年度35件、2014年度31件、2015年度40件、2016年度45件、2017年度48件、2018年41件、2019年44件と推移しており、今やIMS-IIP事業と合わせて分子科学研究所の国際的な存在感を高めるプログラムとなっている。2020年度は新型コロナウイルスの感染拡大により、その件数は30件にとどまった。また2021年度は日本への入国が制限され、短期外国人研究者招へいプログラムによる国際共同研究は0件であった。一方、リモートによる研究打合せ、実験等が加速し2021年度のリモートによる国際共同研究実施者は105名、2022年度は73名であった。2022年度は、新型コロナウイルスの規制が緩和されたため短期外国人招へいプログラムによる国際共同研究実績は12件であった。
5-7 ネットワーク型研究加速事業（自然科学研究機構）

第3期中期計画期間に入り、自然科学研究機構の研究費（運営費）の一部が、機構で統括し、機構長の裁量で各機関に配分することとなり、自然科学研究機構では2016年度に「自然科学研究における機関間連携ネットワークによる拠点形成事業」（2017年度からは「ネットワーク型研究加速事業」に名称変更して継承）として機構内で公募して選考することとなった。これは、自然科学分野における国内外の大学や研究機関との連携による共同研究を推進し、新たな学間分野の開拓も視野に入れて自然現象シミュレーションや新計測技術の開発を生かした創造的研究活動を推進する、国際的にも評価される機関間連携ネットワークの構築による国際的共同利用・共同研究拠点を形成することを目的としている。分子科学研究所においては、この機構内公募に対して「対称性の破れに基づく分子科学の深化」という事業を申請し、採択された。その内容の概略は、以下の通りである。

様々な物質相と階層において、対称性の破れを共通の原理とした理解を促進し、ミクロとマクロの間で起きる分子機能を解明する。新しい分子計測法と理論解析手法を開拓する。そのような研究によって、分子とそのシステムが関わる広い領域の自然現象を対象とした国際的な連携研究のネットワークを形成する。新しい発想の計測を中心にした実験手法と、そこから有意な情報を取り出すデータ解析手法、及び実験結果をシミュレーションし、解析する理論枠組みを一体的に開発し、モザイク、生命科学の広い階層の挙動解明に新たな視点を提供する。また、分子科学関連分野の国内外研究機関と共同研究を通じ、生命科学分野の研究機関とも連携して、観察・解析手法の開発・展開にフィードバックし、それらの特徴を通した新たな異分野融合研究領域を開拓する。

これらの将来的な生命科学への展開について可能性を議論するため、本事業に関わる研究会やセミナーを13件開催した。また海外諸機関との共同研究、インターンシップ受入れを継続して行っている。
5-8 研究大学強化促進事業（文部科学省）

「研究大学強化促進事業」は文部科学省の 2013 年度から 10 年間の事業であり、研究マネジメント人材群（所謂、URA：University Research Administrator）の確保・活用と研究戦略や知財管理等を担う研究マネジメント人材群（所謂、URA：University Research Administrator）の確保・活用と(B) 集中的な研究環境改革による大学等の教育研究機関の研究力強化のための支援事業である。2022 年度はその最終年度にあたる。

自然科学研究機構では、機構本部に研究力強化推進本部（担当理事が本部長）、5 研究所に研究力強化戦略室が設置され、それぞれ研究マネジメント人材（自然科学研究機構では年俸制の特任教員、特任研究員、特任専門員の雇用を可能にした）を配置し、研究力強化戦略会議（議長は機構長。理事、各機関の長5名、各機関の副所長或いは相当職5名、及び推進本部特任教授がメンバー）の下で一体的に活動することになった。なお、研究力強化戦略室の室長は研究力強化戦略会議メンバーである副所長相当職（分子研の場合は研究総主幹）を機構長が指名し、各機関の以下に述べる項目に関する研究マネジメント体制を考えることになった。

自然科学研究機構では、研究力強化のために①国際共同研究支援、②国内共同研究支援、③広報、④研究者支援（外国人、女性、若手）の4本柱を立てて本事業を開始した。また現在では、これらに加えて、⑤ IR（Institutional Research）の機能を事業に含めて運営することとなっている。戦略室の中に広報機能が入ることになったため、分子研では広報室は戦略室に一本化した。また、これまでの史料編纂室機能は研究評価・研究企画に利用するべく IR 資料室の機能を持たせて戦略室に含め、⑤ IR 機能及び評価・企画を含めて統合的に運用することにした。所長は、戦略室の支援によって、より広い見地からの研究力強化の戦略を立てる。

2022 年度は前年度の活動に引き続き、以下の活動を行った。
・研究所の研究力強化のための評価・提言を戴いた。

研究顧問 2022 年 5 月 9 日 - 11 日（ハイブリッドで実施）
北川 進（京都大学物質－細胞統合システム拠点拠点長、特別教授）
James M. Lisy（Research Professor, University of Illinois Urbana-Champaign）

・国際インターンシップ生の受入れを継続して行った。
・ソーシャルネットワークサービスでの発信、一般向け講演会のオンライン開催、ホームページにおける英文の強化を重点的に行った。
・海外との連携強化のため、例年、MOU 締結大学等での視察・打合せ・研究会、および先方からの受入れを行っているが、2022 年度は COVID-19 感染拡大の影響で実施実績はなかった。

122 各種事業
5-9 URA による研究 DX を推進するデータの整備・構築

MIRAI-DX プロジェクト（文部科学省）

研究大学コンソーシアムに参画する国立大学等 36 機関では、自然科学研究機構が事務局となり、研究大学強化促進事業 2020 年度補正予算により URA（ユニバーシティ・リサーチ・アドミニストレーター）の活動を支援するデジタルトランスフォーメーション（DX）プラットフォームの構築を行った。URA の研究支援活動の一部を DX 化することで共同研究ネットワークの構築を推進し異分野人材交流を活発化することが狙いである。

これからの科学研究のあり方の一つとして、研究者個人の意思や能力だけに頼るのではなく、個々の研究者の強み・特徴をデータベース化することで大学・研究機関の組織に研究力情報を集約し、データベース情報に基づいて、個々の研究者では案出しが難しいような共同研究モデルを創出することが考えられる。研究者個人や研究機関単独の取り組みでは研究グループの組織構成・分野交流に限界があったところを、本事業プロジェクトでは全国大学の URA が仲介・伴走することで、組織の枠を越え異分野融合・産学連携をなし、急激な世界の研究進展の潮流に乗り、社会課題の迅速な解決に貢献することを目指す。構築された研究者データの DX プラットフォームを活用し参加機関の URA が協働することで、国内の科学研究を縦横無尽に分野・機関を超えてつなぎ、共同研究を推進することを期待した取り組みである。

2022 年度には、完成した DX プラットフォームを活用し、前年の人的試行で得られたノウハウを組み合わせた共同研究マッチングをパイロットフェーズとして行った。
各種事業

5-10 分子科学研究所所長招聘会議

分子科学研究所所長招聘会議は、我が国の学術の姿、研究力強化、大学及び共同研究機関の変容と変革、大学院教育戦略、国際化、科学政策・評価などについての学術の意見・考えを基に多角的統括的に討議することを目的に、2001年からほぼ1年に1回の頻度で開催されている。日本学術会議化学委員会、日本化学会戦略企画委員会と分子科学研究所の共同主催として開催され、日本学術会議化学委員会の主要活動の一つに位置づけられている。分子科学研究所は運営事務局として参画する。

ここ数年は初夏の頃に本会議を開催しており、2022年度は、「日本の人材育成を考える」というタイトルで、2020年度、2021年度に引き続き、我が国における博士人材の状況と果たす役割について議論を行った。日本の科学技術の低下を防ぐためにも優秀な博士人材の確保は喫緊の課題であるが、経済的な支援を含む様々な施策がなされてきたにも関わらず、博士課程の進学率は上がっていない。博士人材の層を厚くするためには何か必要なのか、今回は4名の講師を招き、博士課程学生支援を総括するとともに、欧米との博士人材育成の違い、社会に貢献できる博士人材の育成、日本特有の就職システムなど、どこに問題があるのかを議論した。

なお、2022年度は、COVID-19感染状況に鑑み、オンラインと現地開催のハイブリッド形式で開催し、約140名の参加者があった。

開催テーマ：「日本の人材育成を考える」
開催日時：2022年6月7日（火）13:00～17:00
プログラム：
開会挨拶 渡辺芳人（分子科学研究所所長）
趣旨説明 茶谷直人（大阪大学名誉教授）
講演
「過去20年の博士支援の総括」
松尾泰樹（内閣府科学技術・イノベーション推進事務局長）
「私が体感した日本と欧州の博士人材育成の違い」
豊田良順（東北大学助手）
「VUCAの時代の企業における博士人材の役割と期待」
高柳大（味の素株式会社）
「日本の悪しき就職活動を変えなければ博士人材育成の改革はできない」
菅裕明（東京大学教授、日本化学会会長）
総合討論
司会：玉田薫（九州大学教授）
討論参加者：上記講演者及び関根千津（株式会社住化技術情報センター代表取締役社長）

主催：日本学術会議化学委員会、大学共同利用機関法人自然科学研究機構分子科学研究所、公益社団法人日本化学戦略企画委員会
運営事務局：分子科学研究所（岡本裕己教授）
6. 研究活動の現状

分子科学研究所は、現在、理論・計算分子科学、光分子科学、物質分子科学、生命・錯体分子科学の4つの研究領域とそれらを繋ぐ協奏分子システム研究センターおよび、メソスコピック計測研究センターで研究基盤を構築している。協奏分子システム研究センターでは、多重の階層を超えて機能する分子システムを構築することを目的とした研究を展開している。メソスコピック計測研究センターでは、広い時空間領域で階層間のエネルギー・情報の変換を可視化する新しい計測手法の開発を目指している。このように、分子機能の開発、そして機能を計測する研究を組み合わせることで、分科科学研究所の特徴を活かしつつ、新しい分子科学研究領域の開拓を目指している。また、自然科学研究機構直属の組織「生命創成探究センター」は、岡崎3研究所（基礎生物学研究所、生理学研究所そして分子科学研究所）の研究力を統合した活動を展開している。さらに、極端紫外光研究施設（UVSOR）を始めとする研究施設を擁し、分子の構造と反応と機能についての先鋭的な基礎研究を進め分子の新たな可能性を探っている。

「特別研究部門」では、分子科学分野を世界的につきすることが期待される卓越教授による研究、分子研の共同利用の施設や設備の利用を超えめる研究者や、各研究領域の研究を発展的に展開する研究者のクロスアポイントメントによる招へいを開始した。「社会連携研究部門」では、産学官の連携研究の推進を目指している。ここでは、コンソーシアムを作り所外からのニーズを反映するオープンイノベーションの拠点として研究室を運営している。「小型集積レーザーコンソーシアム」は、平等拓範特任教授をリーダーとして、民間企業を中心に38機関の会員とともに研究を推進している。
6-1 論文発表状況

分子研では毎年 Annual Review（英文）を発刊し、これに発表した全ての学術論文のリストを記載している。

論文の発表状況

<table>
<thead>
<tr>
<th>編集対象期間</th>
<th>ANNUAL REVIEW</th>
<th>原著論文の数</th>
<th>総説等の数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009.9. 〜 2010.8.</td>
<td>2010</td>
<td>263</td>
<td>56</td>
</tr>
<tr>
<td>2012.9. 〜 2013.8.</td>
<td>2013</td>
<td>280</td>
<td>52</td>
</tr>
<tr>
<td>2013.9. 〜 2014.8</td>
<td>2014</td>
<td>171</td>
<td>38</td>
</tr>
<tr>
<td>2014.9. 〜 2015.8.</td>
<td>2015</td>
<td>193</td>
<td>40</td>
</tr>
<tr>
<td>2015.9. 〜 2016.8.</td>
<td>2016</td>
<td>207</td>
<td>29</td>
</tr>
<tr>
<td>2017.9. 〜 2018.8.</td>
<td>2018</td>
<td>178</td>
<td>52</td>
</tr>
<tr>
<td>2019.9. 〜 2020.8.</td>
<td>2020</td>
<td>211</td>
<td>44</td>
</tr>
<tr>
<td>2021.10. 〜 2022.9.</td>
<td>2022</td>
<td>193</td>
<td>39</td>
</tr>
</tbody>
</table>
6-2 メゾスコピック計測研究センター

メゾスコピック計測研究センター（以後「本センター」）は、旧分子制御レーザー開発研究センター（1997年4月設立）からの改組により、2017年4月に設立された。分子科学研究所の研究対象は、広い意味での分子物質であることは設立当初から変わらないが、当初は一つ一つの分子の挙動に重点をおいて注目されていたのだが、最近では様々な分子やナノ構造体などがシステムを作って発現する機能・特性の解明と制御、及び新しい機能を持つシステムの構築に重点がシフトしてきている。それによって、分子の物質・エネルギー・情報変換能力を精緻に引き出すことが初めて可能になると考えられる。そのような新しい研究の方向性に対応する一つの方策として、分子科学研究所では2013年4月に協奏分子システム研究センターが設立されたところである。

分子計測の先端的手法では、時間、空間、波長、パワーなどにおいて極限に向かう方向が精力的に推し進められ、大きな成果を上げてきた。そうした手法では、理想化された極限条件下で系に大きなエネルギーの擾乱を与えて素過程の挙動を解析する方法が一般的であった。現在もその方式の重要性に変わりはないが、このような従来型計測法の可能性と限界も少しずつ明らかになってきている。本センターでは、従来の手法とは一線を画した、繊細・広帯域・多次元の計測解析手法で分子システムの挙動・機能のままの姿に迫り、また低摂動・超精密計測で新たな量子機能を創出する、革新的実験法の開発が必要である。

新たな分子領域の開発が必要で、分子の素過程が系全体の大域的な機能を生む機構を解明する研究などに主眼を置いて推進する。この目的のために、旧分子制御レーザー開発研究センターの研究業績・資産を引き継ぎながらも、分子科学研究所の基盤となる四つの領域から関連する研究を遂行する研究者の参画を得て、それぞれをまたぐ領域横断的なセンターとして設置することとなった。これにより、同様な組織構成を取った協奏分子システム研究センターとともに、分子物質のシステムとしての挙動・機能を研究する両輪として研究活動を展開することが可能となった。

このような新しい分子計測制御法を、開発・利用していくためのセンターとして、2017年4月の発足時に以下の3部門と担当教員を置くこととした。

(1) 物質量子計測研究部門：大森賢治（教授、光分子科学研究領域からの併任）、信定克幸（准教授、理論・計算分子科学研究領域からの併任）
(2) 繊細計測研究部門：岡本裕巳（教授・センター長、専任）、平等拓範（准教授、専任）
(3) 広帯域相関計測解析研究部門：飯野亮太（教授、生命・錯体分子科学研究領域からの併任）、藤貴夫（准教授、専任）

専任研究グループに所属する助教等のスタッフも本センターの各研究部門に所属する。また、旧分子制御レーザー開発研究センターに所属した技術職員も引き続き本センターに所属させる。今後分子科学研究所に採用される教授・准教授も、状況に応じて上記のいずれかの部門の専任または併任ポストを占めることが想定されている。それぞれの部門の任務は、(1) 蓄積のある光観測・制御法を先鋭化し、さらに量子計測の構造変形を操作することによって、新しい量子相を作り出して制御し、量子情報処理など新規な分子の能力を引き出す。(2) 時空間を分解した計測法、増強光場を利用した超高速度・並列計測等による低摂動で繊細な分子計測法等を開発し、分子のありのままの姿を知るといった機能を高める。
4月に豊田工業大学に、それぞれ転出した。これらの研究領域の扱いについては今後の検討となる。一方、2018年5月には杉本敏樹准教授（物質量子計測研究部門）が物質分子科学研究領域からの、また2019年11月には江原正博教授（繊維計測研究部門）と南谷英美准教授（物質量子計測研究部門）が理論・計算分子科学研究領域からの併任として就任した。南谷准教授は2022年9月に大阪大学に転出した。2021年4月からは、熊谷崇准教授が広帯域相関計測解析研究部門に専任で就任した。

以上のようないくつかの計測解析に関する研究を遂行すること、及びそれを通じて我が国の関連研究コミュニティにおける人材育成に寄与することが本センターの主なミッションであるが、同時にここで開発された新しいメソスコピック計測手法を共同研究に供することも重要な機能の一つである。各研究グループの協力研究やその他のチャネルの共同研究を通じてそれを実施するほか、適宜醸成された計測手法・技術に関するセミナー等を開催する。また、さらに新たな革新的計測手法の開発を念頭に置いた、萌芽的研究テーマとアイデアの発掘、可能性及び将来構想を議論する研究会等の開催も行っている。旧分子制御レーザー開発研究センターでは、分子科学研究所と理化学研究所の連携融合事業「エクストリーム・フォトニクス」を推進する母体となり、その主な研究活動終了後も、合同シンポジウム等の活動を自主的に継続してきたが、本センターはこの活動の継続のための推進母体となることが想定されている。なお、旧分子制御レーザー開発研究センターは、発足当初、種々の共用機器を保有して施設利用に供していたが、現在ではそれらの機器とその利用は全て機器センターに移っており、それを受けて本センターでは施設利用は想定していない。
繊細計測研究部門

岡本 裕巳（教授）（2000年11月1日着任）

吉澤 大智（助教）
山西 絢介（特任助教（分子科学研究所特別研究員））
AHN, Hyo-Yong（特任助教（新分野創成センター））
CHAKRABORTY, Ipsita（特任研究員）
成島 哲也（特別訪問研究員）
石川 晶子（技術支援員）
野村 恵美子（事務支援員）
伊藤 敦子（事務支援員）

A-1) 専門領域：ナノ光物理化学

A-2) 研究課題：
 a) キラルナノ・マイクロ物質における局所的な光学活性とその応用
 b) 光によるナノ物質の力学操作手法の開発

A-3) 研究活動の概略と主な成果
 a) 光学活性分光手法と顕微イメージングを組み合わせた新手法を開発し、それらを用いたナノ・マイクロ物質の局所光学活性に関する基礎研究、及び応用研究を推進している。ナノレベルの空間分解能での測定が可能な近接場光学顕微鏡による光学活性イメージングでは、主にキラルな構造を持つ金属ナノ構造体を対象とし、局所的な円偏光性信号が巨視的円偏光性信号に対して大きく変化し、高い対称性を持つアキラルな金属ナノ構造においても局所的には強い光学活性を示すこと、局所的な誘起円偏光子が局所的な円偏光場の起源になること等、幾つかの基礎的に重要な結果を得た。その成果を基礎として、角光化学とキラルな金属ナノ構造の組み合わせにより、高い円偏光度を示す光学に得られ、その起源をホームドモードとの関連において明らかにした。通常の遠方場の顕微鏡においても光学活性によるイメージングは未開拓であるが、我々は高い精度・精度で顕微光学活性イメージングを可能とする実験手法を開発し、微結晶試料、液体、生体組織等への応用を、共同研究を通じて推進している。キラルな構造を持つ金属有機構造体（MOF）微結晶の構築同定に成功しており、多数の微結晶の構築同定に有用であることを示した。液体分子集合体をテンプレートとした螺旋状金属微粒子集合体では、螺旋の構築による円偏光性信号の差を検出すことに成功した。この他に主として所外の研究者と共同で、様々なキラルナノ物質の観察・同定に用いる研究を推進し、また円偏光性イメージングの医療応用を想定した基礎研究も、医科学分野の研究者と共同で開始している。更に感度や測定速度を向上させる試み、波長範囲を拡張する試み等を推進している。
 b) レーザー光を強く集光すると、その焦点に微粒子がトラップされる（光トラッピング）。非線形効果、共鳴効果、偏光を有効利用することで、このような光による力学的マニピュレーションの自由度が格段に広がることが期待される。この研究展開を図ることを、現在の研究活動の今一つの柱としている。キラルな物質においては、左右円偏光に対する力学的な作用が異なることが期待され、我々はキラル金属微粒子の円偏光による光トラッピングを行いその挙
研究活動の現状

動を調べた。その結果、光トラッピングに関する従来知られている機構では説明困難な部分が見いだされ、理論的に解釈した。これにより、キラル物質の光マニピュレーションの基礎となる知見を得た。

B-1) 学術論文

B-3) 総説、著書

岡本裕巳, 「光と物質の量子相互作用ハンドブック」, 荒川泰彦, 島野 亮, 金光義彦, 岩本 敏, 高原淳一, 立間 徹, 編, エヌ・ティー・エス (2023).

B-4) 招待講演

岡本裕巳, 「光学移動の選択律を破るナノ分光」, 森野ディスカッション, 岡崎 (オンライン開催), 2022年8月．

岡本裕巳, 「キラル光学効果による顕微イメージング」, 早稲田大学理工学術院大学院講演会, 東京, 2022年10月．

岡本裕巳, 「キラル光学効果によるイメージングとその展開」, キラル物質科学の新展開, 柏, 2022年12月．

岡本裕巳, 「「ねじれた光」で見る鏡写しの世界」, 愛知県と自然科学研究機構岡崎3研究所との連携協定締結式 基礎科学講演会, 名古屋, 2022年12月．

B-7) 学会および社会的活動

学協会役員等

プラズモニック化学研究会副会長 (2020-)．
学会の組織委員等

The 10th Optical Manipulation and Structured Materials Conference (OMC2023), Program committee member (2023).
The 31st International Conference on Photochemistry (ICP2023), National scientific committee member (2022–).

文部科学省、学術振興会、大学共同利用機関等の委員等

B-8) 大学等での講義、客員

総合研究大学院大学物理科学研究科, 集中講義「構造光科学」, 2022年 6月–7月.
早稲田大学理工学術院, 集中講義「先端ナノ光物理化学特論」, 2022年 4月–2023年 3月.
早稲田大学理工学術院, 客員教授, 2022年 4月–2023年 3月.

B-10) 競争的資金

科研費基盤研究(A), 「高精度円偏光二色性イメージングによるキラリティ時空間構造の可視化」, 岡本裕己 (2021年度–2024年度).
科研費挑戦的研究所(A), 「キラルな光によるプラズモン物質の不斉誘起」, 岡本裕己 (2021年度–2022年度).
科研費学術変革領域研究(A), 「超螺旋光とナノレベル物質のキラルな動的相互作用」, 岡本裕己 (2022年度–2026年度).
科研費基盤研究(B), 「シングルnmスケールでの物質の円偏光応答の解明」, 山西裕介 (2022年度–2025年度).
科研費学術変革領域研究(A), 「偏光近接場による星間塵ナノ粒子のキラル分子科学」, 成島哲也 (2021年度–2022年度).
科研費学術変革領域研究(A)（総括班）, 「光の螺旋性が拓くキラル物質科学の変革」（代表：尾松孝茂, 岡本裕己（研究分担者）） (2022年度–2026年度).
科研費基盤研究(B), 「スピン流動型インシュテイン・ドハース効果の理論構築と実証実験研究」 (代表: 松尾衛, 成島哲也（研究分担者）) (2020年度–2022年度).

C) 研究活動の課題と展望

着任以来, ナノ構造物質の観察と, 特徴的な光学的性質, 励起状態の超高速ダイナミクス等を探るための, 近接場分光イメージング装置を開発し, 試料の測定を行ってきた。その中で近接場光学活性イメージング法を開発して金属ナノ構造の局所光学活性, キラルな光場の空間構造の解析に用い, そこからグループの主要な研究内容をキラル物質の局所光学活性のイメージングにシフトした。金属ナノ構造の近接場光学活性イメージングによって, 独自の実験的情報を得ることができ, プラズモン由来の強い光を含む状況が生じる, また対称性の高いアキラルな構造でも局所的に強い光学活性を示すという, ユニークな成果も得られた。これらの研究から得られたプラズモンのキラリティに関する性質を基礎として, キラルプラズモンが分子の特性に及ぼす効果に関する研究にも展開しており, 高い円偏光度を示す発光物質系を見出す機会を用いた解明など, 成果が得られるようになってきた。通常の（遠方場）顕微鏡で精度の高い円調色性イメージングを可能とする装置開発も行い, これは物質開発, 生物科学, 結晶学等の様々な分野の研究者から興味を持って頂いている。これらの研究および遠方場円調色性イメージングは, 今後様々なナノ構造光学活性物質の機能解明のための有力な実験手法になることを期待しており, 国内外との共同研究を数件行っている。円調色性顕微鏡を更に汎用性の高い装置とする開発を継続し, 企業との協力も視野に入れている。また物
研究活動の現状

研究活動の現状

質および光のキラリティは磁性との相関においても興味が持たれ、ナノ光学の観点からこの方向への研究展開について実際の共同研究も行っている。更に、円二色性イメージングの医療応用に関する共同研究も開始している。微粒子の光による力学的マニピュレーションについても、キラル微粒子の光トラッピングに関する新たな成果が得られ、その展開も進みたい。これらを総合した新たな方向への展開として、キラルな光－物質相互作用による、物質キラリティの創出の試みを進める科研費学術変革領域研究(A)が今般採択され、これに貢献していきたい。
広帯域相関計測解析研究部門

熊谷 崇（准教授）（2021年4月1日着任）

西田 純（助教）
LIU, Shuyi（学振外国人特別研究員）
伊藤 敦子（事務支援員）

A-1) 専門領域: 物理化学, 表面科学, 近接場分光

A-2) 研究課題: 探針増強分光によるナノ物理化学の研究
a) 低温フォトン走査トンネル顕微鏡を応用したプラズモニックナノ接合における物理化学現象の素過程解明
b) 低温フォトン走査トンネル顕微鏡を応用した原子スケールの時空間極限における分光の開発
c) 超高速・超広帯域近接場光顕微鏡を応用した多次元・多変量ナノ顕微分光の開発

A-3) 研究活動の概略と主な成果
a) プラズモニックナノ接合では局在表面プラズモン共鳴の励起を介して強く局在化したナノスケールの光を発生させることができる。この強く局在化した光の性質とそれによって引き起こされる現象の微細的機構について低温フォトン走査トンネル顕微鏡を応用した極微分光によって調べている。
b) 低温フォトン走査トンネル顕微鏡のプラズモニック接合に発生する強く局在化した光を原子スケールで操る技術を開発し、極限空間における極微分光についての研究を行っている。さらに超短パルスレーザーと組み合わせることにより時空間極限における究極的な分光の開発を目指している。現在は低次元物質におけるフォノンダイナミクスを原子スケールで直接観測する研究に取り組んでいる。この研究課題は科研費帰国発展研究に採択されている内容である。
c) 原子間力顕微鏡に基づいた非開口型近接場光顕微分光を超高速・超広帯域のパルスレーザーと組み合わせた多次元・多変量ナノ顕微分光の開発を行っている。この新しい先端計測によって重要な電子・光学材料の構造、物性そして機能を解明する研究へと展開していくことを目標している。これは分子科学研究所への着任に伴い新しく開始した研究課題であり、JST 創発的研究支援事業に採択されている内容である。

B-1) 学術論文

B-4) 招待講演
熊谷 崇,「Atomic-Scale Optical Spectroscopy at Surfaces」, NanospecFY2022mini, オンライン開催, 2023年3月。
熊谷 崇,「原子スケールの極微分光」, 物性研短期研究会「機能的走査プローブ顕微鏡の新展開」, オンライン開催, 2023年3月。

T. KUMAGAI, “Atomic-Scale Optical Spectroscopy at Surfaces,” The DPG Spring Meeting of the Condensed Matter Section, Regensburg (Germany), September 2022.

B-7) 学会および社会的活動
その他
分子科学若手の会夏の学校講師 (2022)。（西田 純）

B-8) 大学等での講義、客員
北海道大学, 客員准教授, 2020年4月－。
京都大学大学院理学研究科, 客員准教授, 2022年4月–2023年3月。
京都大学大学院理学研究科, 非常勤講師, 2022年4月–2023年3月。
東京工業大学, 非常勤講師, 「化学コース化学特別講義第五」, 2022年9月–2023年3月。
北海道大学触媒科学研究所, 招へい教員, 2022年4月–2023年3月。

B-10) 競争的資金
科研費国際共同研究加速基金（帰国発展研究）, 「時間分解探針増強ラマン分光による時空間極限における原子層物質のフォノン計測」, 熊谷 崇 (2021年度–2023年度)。
科学技術振興機構創的研究支援事業, 「時空間極限における革新的光科学の創出」, 熊谷 崇 (2021年度–2027年度)。
自然科学研究機構新分野創センター先端光学科学研究分野プロジェクト, 「原子スケールのラマン分光による半導体・酸化物表面の局所構造と化学反応の解明」, 熊谷 崇 (2022年度)。
科研費若手研究, 「時空間極限分光測定による有機鉛ペロブスカイトの電子–格子相互作用の実時空間観測」, 西田 純 (2022年度–2023年度)。

134 研究活動の現状
自然科学研究機構新分野創成センター先端光科学研究分野プロジェクト、「超局在赤外近接場分光による単一タンパク質内の振動分光」、西田 純 (2022年度)。

C) 研究活動の課題と展望
分子科学研究所の着任に伴い新しく開始した研究課題、「低温フォトン走査トンネル顕微鏡を応用した原子スケールの時空間極限における分光の開発」および「超高速・超広帯域近接場原子間力顕微鏡を応用した多次元・多変量ナノ分光の開発」を推進していく。これらの研究課題は科研費帰国発展研究およびJST 創発的研究支援事業に採択されており、加速的に研究を進められると期待している。走査プローブ顕微鏡を基軸とした極限計測技術を研究室の柱として物理化学、分子科学、そしてナノ科学にまたがる学際領域の形成、革新的な光学科学・光技術の創出を目指した基礎研究を展開していきたいと考えている。また、マックス・プランク協会フリッツ・ハーバー研究所（ベルリン、ドイツ）と2021年に締結した研究協力協定に基づいた国際的な共同研究や学術交流についても積極的に推進していきたいと考えている。
6-3 協奏分子システム研究センター

6-3-1 経緯と現状，将来構想

協奏分子システム研究センターは2013年4月に発足し，分子科学研究所がこれまでに培ってきたナノサイエンスに関する研究資源を基盤に，新しい分子科学の開拓に取り組んでいる。センターのミッションは，「分子それぞれの性質が階層構造を持つ分子システムの卓越した機能発現にどう結びつくのか」という分野横断的な重要課題を解決することである。そのためには，システムの構成要素である分子自身について理解を深めるのに加え，それぞれの分子がどのようなネットワークや制御を介して混然一体となり，複雑かつ高度な機能の発現へと繋がっていくのかを理解しなければならない。

このような目的の達成に向けて，微細なナノスケールの分子科学からタンパク質や細胞のようなマクロで不均一な分子科学まで研究者を幅広く募り，「階層分子システム解析研究部門」，「機能分子システム創成研究部門」，「生体分子システム研究部門」の3部門体制で研究活動を展開している。現在，専任PIが3名（秋山教授，山本教授，倉持準教授），併任PIが5名（斉藤教授，青野教授，加藤教授，飯野教授，古賀准教授）の計8名となっている。未踏の領域に切り込む若手研究者から，分野をリードするシニア研究者まで，異なる学問領域の研究者が集う，幅広くも層の厚いメンバー構成となっている。

2022年度の特筆すべき研究成果として，磁場によるキラル分子の左右分別に関する共同研究（山本グループ）が科学雑誌「Nature」誌に掲載された。その他，階層分子システム解析研究部門からは，概日時計振動体の温度補償性，原子分解能構造，同調性に関する共同研究成果が「Communications Physics，Science Advances，Proceedings of the National Academy of Sciences of the United States of America」誌に（秋山グループ）発表され，その学術的な新規性・重要性が高く評価されている。

専任PIはセンターが掲げる目標に向かって，これまでの研究とは違う新しい一歩を踏みだすことが求められる。既に一部のグループ間で共同研究が進行中であるが，より多くのセンター構成員で共有できる新しい研究プロジェクトを練り上げていく必要がある。専門から少し離れた分野でのプロジェクト立案には人的交流が何よりも重要であるため，研究グループの居室を南実験棟の3階の1フロアに集中させ，一部をオープンスペースとして運用しつつ，科学的な議論や交流を活発に進めている。

その他，CIMOセミナー，ワークショップなどを企画・実施し，それらを通じてセンターの活動や成果を国内外のコミュニティに向けて発信している。

136 研究活動の現状
階層分子システム解析研究部門

秋山 修志（教授）（2012年4月1日着任）

向山 厚（助教）
古池 美彦（助教）
DUBERN, Lucie（インターンシップ）
LEDOIGT, Magali（インターンシップ）
SIMON, Damien（大学院生）
鷲尾 みどり（技術支援員）
杉坂 かな恵（技術支援員）
大原 さとみ（技術支援員）
谷浦 愛子（技術支援員（派遣））
蜂須賀 円（技術支援員（派遣））
鈴木 博子（事務支援員）

A-1) 専門領域：生物物理学，時間生物学

A-2) 研究課題：
 a) タンパク質時計が奏でる概日リズムの分子科学的解明
 b) X線溶液散乱による生体分子システムの動的構造解析

A-3) 研究活動の概要と主な成果

研究活動の現状

ズムを駆動するアロステリーについては理解が進んでいなかった。我々は、S431とT432のリン酸化修飾サイクルを網羅する4つの異なる状態のKaiCを結晶化し、検出された複数多様なアロステリーを詳細に分析することで、KaiCの振動性に必須となる最小単位のアロステリーを特定した。

二つ目は、KaiCの温度補償性に関する成果である（Furuike et al., Commun. Phys. 2022）。時計タンパク質は、酵素活性を生理的な温度範囲で一定に保つ温度補償能を有する。他方、酵素を構成するアミノ酸は高温でより頻繁に揺らぎ、それに伴って酵素活性が上昇する傾向が一般的にみられる。よって、温度補償能を有する挙動時計タンパク質のダイナミクスが特殊な制御を受けている可能性があるが、それを実験的に証明した例は皆無である。我々は、温度補償型ATPaseであるKaiCのダイナミクスに及ぼす温度の影響を中性子準弾性散乱法で精査した。その結果、KaiCが揺らぎを利用して、高温下でC1-ATPase活性が上昇しないように自律制御していることが明らかとなった。酵素が自らの活性を高めるためだけでなく、恒常性を実現する自律的手段として揺らぎを積極的に利用していることを示す独自性の高い研究成果である。

三つ目は、超短周期(0.6 d = 15 h)から超長周期(6.6 d = 158 h)にわたる多様なリズムを表しせる同一サイト(Y402)点変異群の発見である（Ito-miwa et al., Proc. Natl. Acad. Sci. U. S. A. 2020）。温度補償された600%に及ぶ周期長変化を説明する発振モデルは皆無であり、本発見を機に、既存モデルの根本的な書き換えを迫られるであろう。本発見は、概日リズムの基本設計を原点に立ち返って議論しなおすきっかけを世界中の研究者に与える可能性がある。超短周期(海洋生物の産卵、人間の月経周期)や概年リズム(動物の冬眠/繁殖、植物の花芽形成)の設計原理にも指針を与え得るもので、関連分野でも相当の関心を集めている。

それ以外にも、名古屋大学卓越大学院プログラム（トランスフォーマティブ化学生命融合研究大学院プログラム）との連携活動として、同大学農学部の吉村崇教授らとの共同研究を実施して成果を取りまとめた（Maruyama et al., PLoS ONE 2022）。

b）生体分子システム（時計タンパク質、抗酸化酵素、受容体など）のX線溶液散乱を記録し、散乱データと結晶構造の比較や低分解能モデルの構築を通じて、分子システムの動的構造解析を行った（Okamura et al., Structure 2021）。

B-1）学術論文

B-4) 招待講演
S. AKIYAMA, “Molecular Aspects of Circadian Clock Evolution,” Seminar, Nagoya, 2022年9月。
秋山修志, 「どうして生物の24時間リズムは安定なのか？」, 2022年度量子ビームサイエンスフェスタ, つくば市, 2023年3月。
秋山修志, 「概日時計システムに夜明けを告げる時計タンパク質の自律的な複体解離」, 日本化学会第103回春季年会, 野田市, 2023年3月。
古池美彦, 「原子分解能でみた概日時計の朝夕昼夜」, 日本生物物理学会年会 手振奨励奨選考会, 函館, 2022年9月。
古池美彦, 「放光学X線で照らす時計タンパク質KaiCの概日振動メカニズム」, SPring-8シンポジウム2022 Young Scientist Award受賞講演, 兵庫県相生町, 2022年9月。

B-6) 受賞, 表彰
秋山修志, （公財）長瀬科学技術振興財団 長瀬研究振興賞 (2022)。
古池美彦, 日本生物物理学会若手奨励奨 (2022)。
古池美彦, 日本結晶学会進歩賞 (2022)。
古池美彦, SPring-8ユーザー協同体 SPRUC 2022 Young Scientist Award (2022)。

B-7) 学会および社会的活動
学協会役員等
日本時間生物学会 評議員 (2017–). (向山 厚)
学会の組織委員等
第61回 (2023年) 日本生物物理学会年会実行委員 (2022–). (向山 厚)
文部科学省, 学術振興会, 大学共同利用機関等の委員等
日本学術会議連携会員 (2020–2024)。
SPring-8長期利用分科会委員 (2019–)。
学会誌編集委員
Biophysics and Physicobiology, Editorial Board Members (2021–2025)。
日本蛋白質科学会アーカイブ編集委員 (2017–). (向山 厚)
理科教育活動
港区立みなと科学館講演会講師 (2022). (古池美彦)

B-8) 大学等での講義、客員
名古屋工業大学、非常勤講師、2022 年 7 月〜2023 年 3 月。
理化学研究所、客員研究員、2021 年 4 月〜2024 年 3 月。
理化学研究所、客員技師、2021 年 4 月〜2024 年 3 月。(向山 厚)

B-9) 学位授与
SIMON, Damien, 「Disassembly Mechanism of Circadian Clock Proteins in Cyanobacteria」, 2022 年 9 月, 博士(理学).

B-10) 競争的資金
長瀬科学技術振興財団研究助成、「単純化指向型アプローチによるシアノバクテリア概日時計システムの源振動解明」, 秋山修志 (2022年度)。
武田科学振興財団 2022年度生命科学研究助成、「概日時計タンパク質 KaiC における構造多型の操作と解析」, 秋山修志 (2022年度〜2023年度)。
科研費挑戦的研究 (萌芽), 「月面閉鎖生態系の構築を目指した改変型シアノバクテリアの設計」, 秋山修志 (2022年度〜2023年度)。
科研費基盤研究(S), 「概日時計の複雑多様性の単純化」 (代表; 秋山修志), 古池美彦 (研究分担者), 向山 厚 (研究分担者) (2022年度〜2026年度)。
科研費若手研究, 「時計タンパク質の絡み合ったアロステリック運動を読み解く」, 古池美彦 (2022年度〜2024年度)。
科研費学術変革領域研究(B), 「時計タンパク質学」 (計画研究), 「生命の時間を宿す機能的 KaiC ホモログの探索技術の開発」, 向山 厚 (2021年度〜2023年度)。
科研費基盤研究(C), 「原始概日時計の試験管内再構成」, 向山 厚 (2022年度〜2024年度)。
科研費学術変革領域研究(B), 「時計タンパク質学: 時を生み出すタンパク質特性の総括」 (代表; 吉種光), 向山 厚 (研究分担者) (2021年度〜2023年度)。

C) 研究活動の課題と展望
2017年度から取り組んできた基盤研究(S) [統合的多階層アプローチによるシアノバクテリア生物時計システムの新展開;2017 ~ 2021年度]が終了し, Kai タンパク質時計の普遍性と多様性の解明, ATPase /リン酸化構造基盤の解明, 温度補償性と揺らぎの関係性の解明, いずれにおいても当初の目標を上回る新発見があった (最終年度検証結果: A)。2022年度からは、基盤研究(S) [概日時計の複雑多様性の単純化;2022 〜 2026年度], 挑戦的研究 (萌芽) [月面閉鎖生態系の構築を目指した改変型シアノバクテリアの設計研究;2022 〜 2023年度], 長瀬科学技術振興财団 2022年度助成 [単純化指向型アプローチによるシアノバクテリア概日時計システムの源振動解明;2022年度]。武田科学振興財団生命科学研究助成 [概日時計タンパク質 KaiC における構造多型の操作と解析への助成;2022年度〜]を中心に、波及効果の大きい論文として公表できるよう、今後の質を堅持しつつも更にベースを上げて研究を進める。
A-1) 専門領域：生物物理学，タンパク質分子デザイン

A-2) 研究課題：
 a) 計算機および生化学的アプローチによるタンパク質分子デザイン

A-3) 研究活動の概略と主な成果
 望みの機能を持ったタンパク質分子を自在にデザインすることが可能になれば，細胞の制御・設計や医療への貢献，加えて新規酵素やマテリアル開発による産業への応用が期待される。我々は，タンパク質分子を主鎖構造から完全にゼロからデザインすること，更には自然界のタンパク質分子を改造することで，望みのタンパク質分子を創製する理論と技術の開発を行う。

 a) 回転対称多量体タンパク質のデザイン：多くのタンパク質は3次構造を形成した後に4次構造を形成することで機能を発現する。これまでにデザインしたタンパク質をビルディングブロックとして組み合わせることで，多様な形状の新規回転対称多量体をデザインする技術を開発する。これまでに開発した技術を用いて，2量体および5量体の設計に成功し，6量体に関してもデザインしたタンパク質のひとつが，6量体を形成していることを示唆する結果を得ている。

 b) ヘム結合タンパク質のデザイン：これまでにデザインしたタンパク質をビルディングブロックとして組み合わせることで，望みの小分子に結合するタンパク質分子をデザインする手法の開発を行う。特に，ヘム結合タンパク質を例として研究を行っている。これまでにデザインしたタンパク質を，2量体のコイルドコイルを形成するαヘリックスのNC末端それぞれに連結させることで，連結したドメイン間に小分子結合サイトが形成されるか計算機シミュレーションを行い調べている。

 c) ATP結合タンパク質のゼロからのデザイン：自然界にはATPを加水分解して動的機能を発現するタンパク質が存在する。タンパク質がATPを加水分解するためのツインサムな装置を明らかにすることを目的とし，まずATPを結合するタンパク質のゼロからのデザインを行った。これまでに発見した3つのルールとスクレオチド結合に重要とされるP-loopモチーフを使うことで，計算機上でATP結合タンパク質のデザインを行った。生化学実験により，デザインしたタンパク質は安定な構造を形成し，ATPに対して800uMくらいの結合親和性を示した。さらに，結晶化して構造を解くことにより，設計通りの構造をしていることを確認した。今後は，より活性を向上させることを目指す。

 d) 動的機能を発現する自然界のタンパク質F-ATPaseおよびV-ATPaseの改造：自然界には，ATP加水分解のエネルギーを利用して構造変化することで機能を発現するタンパク質がある。このようなタンパク質がどのようにして動的機能を発現しているのか，回転モータータンパク質であるF-ATPaseおよびV-ATPaseを改造することで，そのメカニズムに迫った。分子動力学シミュレーション，1分子観測，ATPase活性測定，cryo電子顕微鏡構造解析，結晶構造
解析等あらゆる手法を駆使して、構造変化のメカニズムに迫ったところ、F-ATPase の構造変化に重要な部位を特定した。また、V-ATPase の非触媒活性部位に、ヌクレオチド結合サイトを設計することで、V-ATPase に新規アロステリック機構を付与し、V-ATPase の回転を加速することに成功した。さらに、ここで設計した V-ATPase と天然の V-ATPase を比較することで、天然の V-ATPase の複合体状態に関する知見も得られている。

e) タンパク質の耐熱性を向上させることは、タンパク質を産業利用する上で重要である。タンパク質をゼロからデザインする技術を応用して、自然界のタンパク質を合理的に安定化する手法の開発を行った。開発した手法を用いて、PET 製品のバイオリサイクルに重要な PET 分解酵素の安定化に成功した。

f) α ヘリカル構造を自在にデザインするための手法の開発を行った。まず自然界のタンパク質構造を解析し、ヘリックス同士をつなぐ典型的なループパターン 18 種を明らかにしている。これらのループパターンを組み合わせることで、計算機上で疎水性コアパッキングを形成し、加えて表面形状が多様な α ヘリカル構造を構築する手法を開発した。さらに、これら α ヘリカル構造に対して、側鎖-側鎖もしくは主鎖-側鎖水素結合が形成されるよう側鎖設計の手法を開発した。

B-1) 学術論文

B-3) 総説、著書

古賀理恵、小杉貴洋、古賀信康、『タンパク質の新常識 4. de novo デザインタンパク質——生物がもたないタンパク質を設計できる時代』実験医学増刊、40(12), 2046–2054 (2022)。

小杉貴洋、「タンパク質設計技術で目指す未来——特集 現代化学の最前線 2023」、現代化学、2023年1月号(662), 34–36 (2022)。

B-4) 招待講演

古賀信康、「Design principles for proteins and exploration of novel ones」, IPR × RIKEN(BDR) Symposium 2023「Dive into Data of Life」, 豊中, 2023年2月。

古賀信康、「新規タンパク質配列空間の探索」, 第25回高速分子動画オンラインセミナー, オンライン開催, 2022年10月。

古賀信康、「新規タンパク質構造の設計」, WINGS-LST/SPRING-GX コロキウム2022, 大磯プリンスホテル, 大磯町, 2022年10月。

古賀信康、「新規タンパク質構造の創出（SCP 生体分子の人工設計: タンパク質, RNA, DNA）」, 第60回日本生物物理学会年会, 会館, 2022年9月。

古賀信康、「タンパク質の合理設計手法の開発：酵素の耐熱化とゼロからの設計」, キリンホールディングス株式会社 R&D 本部キリン中央研究所, 湘南iPARK, 藤沢, 2022年8月。
古賀信康、「タンパク質の合理設計：自然界のタンパク質の改造。新規創成（WS2 発動分子エンジニアリング：タンパク質分子機械をいじり倒して実現する新機能）」，第 22 回日本蛋白質科学会年会，つくば国際会議場，つくば，2022年 6 月。
小杉貴洋，「機能を持った “新しい” 蛋白質の設計」，第 22 回日本蛋白質科学会年会ワークショップ「AlphaFold の時代の分子シミュレーション」，つくば，2022年 6 月。
小杉貴洋，「タンパク質（計算）科学から始まる生物学を目指して」，第 22 回日本蛋白質科学会年会シンポジウム「未来の話をしよう！」，つくば，2022年 6 月。
小杉貴洋，「人生の選択：その時私が考えたこと」，蛋白質科学会若手の会第二回研究交流会，つくば，2022年 6 月。
小杉貴洋，「アロステリック部位を設計して回転分子モーターを制御する」，第 58 回学術変革（B） SPEED journal club, オンライン開催，2022年 5 月。
小杉貴洋，「高次構造体の協奏的機能を合理的に制御することを目指して」，第 60 回日本生物物理学会年会 JST さきがけ「細胞の動的高次構造体」共催シンポジウム「高次構造体を自在に操る」，函館，2022年 9 月。
小杉貴洋，「タンパク質設計技術を用いて生体内化学反応を理解・制御する」，化学反応のポテンシャル曲面とダイナミックス，京都，2022年 12 月。
N. KOGA，“De novo design of protein structures,” iNANO-IMS-ExCEllS Interdisciplinary Nanoscience Joint Meeting, Okazaki (Japan), December 2022.
N. KOGA，“De novo design of novel protein structures,” Advances In Protein Folding, Evolution, and Design 2022, Bayreuth (Germany), April 2022.
T. KOSUGI，“Allosteric control of rotary molecular motor by redesigning non-catalytic interface,” Sendai2022 Workshop, Sendai (Japan), August 2022．

B-7) 学会および社会的活動

学協会役員等
日本生物物理学会分野別専門委員：タンパク質設計・ドラッグデザイン (2015–2023)。
学会の組織委員等
第 60 回日本生物物理学会年会シンポジウム「生体分子の人工設計：タンパク質、RNA、DNA」オーガナイザー (2022)。
第 60 回日本生物物理学会年会シンポジウム「高次構造体を自在に操る」オーガナイザー (2022)。（小杉貴洋）
第 60 回日本生物物理学会年会シンポジウム「発動分子科学への若手研究者による挑戦」オーガナイザー (2022)。（小杉貴洋）

B-10) 競争的資金
科研費基盤研究(B)，「多様な形状の新規回転対称多量体タンパク質の合理デザイン」，古賀信康 (2022年度–2024年度)。
科学技術振興機構さきがけ研究，「タンパク質複合体を合理的に改造し、細胞内機能を理解・制御する」，小杉貴洋 (2020年度–2023年度)。
B-11) 産学連携
共同研究, キリンホールディングス(株),「PET分解酵素の開発」, 古賀信康 (2022年).

C) 研究活動の課題と展望
2022年10月に大阪大学蛋白質研究所に着任した。これまでの研究活動により様々な形状のタンパク質構造を設計する技術の開発に成功した。蛋白研では、これらの技術を用いて機能タンパク質を設計するとともに、設計したタンパク質構造をビルディングブロックとして組み合わせ、より巨大かつ複雑な形状のタンパク質を設計する技術開発に取り組む。

*) 2022年10月1日大阪大学蛋白質研究所教授
倉 持 光（准教授）（2020年4月1日着任）
米田 勇祐（助教）
伊藤 敦子（事務支援員）
神谷 美穂（事務支援員）

A-1) 専門領域：物理化学，超高速分光，非線形分光，超短パルス発生

A-2) 研究課題：
 a) 先端的超高速分光による凝縮相複雑分子の機能・構造・ダイナミクスの研究
 b) 極限時間分解分光計測のための先端光源開発

A-3) 研究活動の概要と主な成果
 a) 室温・溶液中において分子はさまざまな時間スケールで起こる揺らぎの影響下にあり、分子の状態は時々刻々と変化する。こうした揺動する分子一つ一つの個性を反映した、分子一つ一つの個性を反映した反応ダイナミクスをその変遷（揺らぎ）を直接観測することを目指している。特に本年は、新たに導入した高繰り返し高出力ファイバーレーザー増幅器に基づいて、その出力を波長変換し励起光として用いる自作の共焦点顕微鏡を構築した。蛍光光子相関解析を用いることで視野内に1分子以下の条件であることを確認し、蛍光検出に基づく単一分子検出感度での時間分解分光計測に成功した。特に本年は、新たに導入した高繰り返し高出力ファイバーレーザー増幅器に基づいて、その出力を波長変換し励起光として用いる自作の共焦点顕微鏡を構築した。蛍光光子相関解析を用いることで視野内に1分子以下の条件であることを確認し、蛍光検出に基づく単一分子検出感度での時間分解分光計測に成功した。平行して開発を進めている高繰り返しサブ10 fsパルス光源を用いることで、極限的な時間分解能により室温・溶液中における単一分子レベルの超高速分光計測を行う技術的基盤が整いつつある。
 b) 顕微時間分解分光は光機能性物質・材料の時空間ダイナミクスや、単一分子の反応ダイナミクスを調べ上で強力な手法である。これらの測定においては、高い信号雑音比を得るために高い繰り返し周波数を持つパルスレーザー光源を用いることが重要となるが、これまで高い繰り返し周波数で波長可変な極短パルス光を発生させることは困難であった。そこで、われわれは顕微鏡下で単一分子検出感度を有する超高速分光を実現するため、高繰り返し波長可変極短パルス光源の開発に取り組んだ。MHz周波数で発振するYbファイバーレーザー増幅器をベースとして、非線形光学過程を用いた波長変換を行い、さらに自作のパルス整形器を用い分散補償を行うことで、可視光領域全域で波長可変なサブ10 fsパルス光を得た。実際にこの広帯域パルス光を自作の顕微鏡に導入し、単一分子検出感度での顕微分光に成功した。本光源を用いることで、極限的な時間分解能による単一分子レベルでの超高速分光を今後展開する。

B-1) 学術論文

研究活動の現状 145

B-3) 総説，著書
倉持 光、田原太平，「フェムト秒時間分解時間領域ラマン分光で観る光化学反応の超高速構造ダイナミクス」，光化学，53(3)，132–137 (2022).

B-4) 招待講演
米田勇祐，「先端的分光解析で解きほぐす光化学系IIの複雑な励起状態ダイナミクス」，第29回「光合成セミナー2022」，オンライン開催，2022年6月。
米田勇祐，E. A. ARSENAULT, S. JR YANG, K. ORCUTT, M. IWAI and G. R FLEMING, 「励起子電荷分離混成が酸素発生型光合成を駆動する」，第60回日本生物物理学会年会，函館，2022年9月。

B-6) 受賞，表彰
米田勇祐，日本生物物理学会若手奨励賞 (2022).

B-7) 学会および社会的活動
学会の組織委員等
第8回アジア分光学国際会議(8th Asian Spectroscopy Conference, ASC2022)運営委員 (2020–2023)。
理科教育活動
「科学三昧 in あいち 2022」ポスター指導 (2022)。（米田勇祐）
その他
分子科学若手の会夏の学校講師 (2022)。

B-8) 大学等での講義，客員
理化学研究所，客員研究員，2022年5月–2024年4月。
総合研究大学院大学物理科学研究科，「構造物性科学」，2022年11月–2022年12月。

B-10) 競争的資金
科研費挑戦的研究 (開拓)，「揺るぐ単一光応答性タンパク質の超高速分光」，倉持 光 (2021年度–2023年度)。
科研費基盤研究(B)，「先端的コヒーレント振動分光による反応性ポテンシャルエネルギー曲面形状の実験的探究」，倉持 光 (2021年度–2023年度)。

146 研究活動の現状
科学技術振興機構創発的研究支援事業（受託研究）、「室温・溶液中における単一分子の極限時間分解分光」, 倉持光 (2021年度–2023年度)。
科研費若手研究, 「蛍光検出振動分光によるタンパク質発色団構造揺らぎダイナミクスの解明」, 米田勇祐 (2022年度–2023年度)。
科研費研究活動スタート支援, 「過渡2次元赤外分光による光合成励起・電子移動経路マッピング」, 米田勇祐 (2021年度–2022年度)。

C) 研究活動の課題と展望
われわれはバルク溶液・固体に対する（アンサンブル平均を観る）先端的な超高速分光と、新たに開発を進めている室温・溶液中における単一分子レベルでの超高速分光を相補的に用いることで、凝縮相複雑分子系の反応ダイナミクスの研究に新たな道を拓くことを目指している。バルク溶液・固体系の超高速分光に関しては、世界最高性能を有する分光装置と光源を構築・整備した。これら装置を用いることで、所内外の共同研究者と連携しながら、多様な機能性複雑分子の超高速電子・構造ダイナミクスの解明に現在取り組んでいる。単一分子レベルの超高速分光に関しても、顕微分光装置・光源開発が順調に進んでいる。今後光受容タンパク質の時間分解分光計測へと展開し、光-エネルギー変換を決定づける超高速過程と、マイクロ秒~ミリ秒スケールで起こる構造揺らぎの相関を解く。
機能分子システム創成研究部門

山本浩史（教授）（2012年4月1日着任）

AVARAVARI, Narcis（外国人研究職員）
佐藤拓朗（助教）
WU, Dongfang（特任専門員）
CABRIERES, Marc（インターンシップ）
相澤洋紀（大学院生）
鍋井庸次（大学院生）
中島良太（大学院生）
URBAN, Adrian（大学院生）
MALATONG, Ruttapol（大学院生）
友田美紗（大学院生）
楠本恵子（大学院生）
村田了介（技術支援員）
石川裕子（事務支援員）

A-1) 専門領域：分子物性科学

A-2) 研究課題:
 a) キラル有機超伝導体を用いたスピントロニクス
 b) キラル分子によるスピン偏極の理論構築
 c) 無機キラル金属における電流誘起スピン偏極

A-3) 研究活動の概略と主な成果
 a) 有機キラル超伝導体であるκ-(BEDT-TTF)₂Cu(NCS)₂塩の薄膜単結晶を用いたスピントロニクスデバイスを作製し、
その電気的磁気的特性を測定した。その結果、超伝導転移時点で交流による励起を行うと、磁性電極上に偏極ス
ピンが蓄積することが見出された。これは超伝導結晶のキラルな空間群に基づくスピン流生成が原因であると考えら
れるが、その大きさを見積もると、有機超伝導体が有するスピン軌道相互作用エネルギーから得られるスピン偏極
の1000倍以上に達する巨大なスピン蓄積が生じていることが明らかとなった。また、シグナルの磁場角度依存性から、
スピン蓄積が結晶の上下で反転していることが明らかとなった。（BEDT-TTF = Bis(ethylenedithio)tetrathiafulvalene）
 b) CISS（Chirality-Induced Spin Selectivity）効果はキラル分子に対してトンネル電流を流すと、分子を通過してきた電
子のスピンが電流と平行あるいは反平行に偏極する現象であり、近年新たな有機スピントロニクスや光学分割の手
段として注目されてきた。我々はこのようなスピン偏極が、分子振動と電子の運動との強い結合によって生み出さ
れるのではないかと考え、動的ヤーンテラー効果による理論的説明を試みた。その結果、スピン軌道相互作用が十
分弱い場合においても、核と電子の並進・回転運動が同時に量子化されることによって、キラル分子を通過する電
子に高いスピン偏極率が生み出される仕組みを提案することに成功した。また、電子の量子状態を多極子展開する
ことにより、キラリティの秩序変数を表現することが可能となり、キラリティの量子力学的再定義が可能であること
を明らかにした。
研究活動の現状

B-1) 学術論文

B-3) 総説, 著書

B-4) 招待講演（* 基調講演）

H. M. YAMAMOTO, “Symmetry considerations on the CISS effect,” Wilhelm und Else Heraeus-Stiftung meeting, Bad Honnef (Germany), December 2022.

H. M. YAMAMOTO, “Polarized Spins in Chiral Materials,” Andre Collet meeting, Biarritz (France), October 2022.* (Plenary)

H. M. YAMAMOTO, “Chiral metals and superconductors for spin generation,” MRS Thailand 2023, Ubon Ratchathani (Thailand), March 2023.* (Keynote)

B-5) 特許出願

B-7) 学会および社会的活動
学協会役員等
日本物理学会第 77 期・第 78 期代議員 (2021–2023)。
学会の組織委員等
分子科学会運営委員 (2018–)。
文部科学省，学術振興会，大学共同利用機関等の委員等
日本学術振興会科学研究費審査員専門委員 (2021–2022)。
その他
凝縮系科学賞審査委員 (2019–)。
森野基金推薦委員 (2021–)。
Scientific Advisory Board member for the ELASTO-Q-MAT (Deutsche Forschungsgemeinschaft) (2022–)。
Selection Committee member for Asian Young Scientist Fellowship (2022–)。

B-8) 大学等での講義，客員
公立大学法人大阪，非常勤講師，2022 年 4 月–2022 年 9 月。
理化学研究所，客員助手研究員，2020 年 12 月–2023 年 3 月。
理化学研究所，客員研究員，2022 年 4 月–2025 年 3 月。（佐藤拓朗）

B-9) 学位授予
鍋井庸次，「Study of Chirality-induced Spin Polarization and Spin-dependent Photocurrent Response」，2023 年 3 月，博士（理学）。
中島良太，「CISS (Chirality-Induced-Spin-Selectivity) Effect in Chiral Molecular Superconductor」，2023 年 3 月，博士（理学）。

B-10) 競争的資金
科研費基盤研究(A)，「有機強相関電子デバイスによる伝導性と磁性の制御」，山本浩史 (2019 年度–2022 年度)。
科研費基盤研究(B)，「電流駆動された磁気スキュリミオン系における新奇非平衡相の開拓」，佐藤拓朗 (2020 年度–2022 年度)。
大幸財団研究助成，「精密電流揺らぎ測定を用いたキラル有機分子における巨大スピン偏極伝導機構の微細的解析と制御」，佐藤拓朗 (2021 年度–2022 年度)。
科研費基盤研究(B)，「カイラリティが誘導するフォノン・スピニ・フォトン交差結合の理論」（代表：岸根順一郎），山本浩史 (研究分担者) (2021 年度–2024 年度)。

B-11) 産学連携
共同研究，(株) 島津製作所，「小型検出器に関わる要求仕様の確認と，試作機による評価」，山本浩史 (2021 年度–2022 年度)。
共同研究，兼藤産業 (株)，「既存する緊急告知防災ラジオと連動して動く防災システムに関する開発研究」，山本浩史 (2020 年度–2022 年度)。

150 研究活動の現状
共同研究，(株)アステム，「アイ・ドラゴン 4 の機能を広範囲に警報周知するシステムへと機能を拡張する可能性に関する共同研究」，山本浩史 (2022年度–2023年度)。

C) 研究活動の課題と展望

キラリティによるスピン流生成は，近年益々注目されるようになっている。どちらかと言うと化学分野で注目されている CISS のみならず，物理物理分野で反転対称性を失った物質構造に基づく新たな物性発現が盛んにされており，両者の共通点と相違点を検討しながら実験を進めていく必要があると考えられる。本年の成果により，キラル分子の量子状態が本質的にスピン構造を内包した電気トロイダルモノポールによって表現されることは明らかとなった。このようなキラル物質特有の性質と，CISS 効果との関係性解明を進めると同時に，様々な外場によるスピン流の制御に取り組むなど，より広い視点での展開を実現していきたい。
6-4 理論・計算分子科学研究領域

理論分子科学第一研究部門

斎藤 真司（教授）（2005年10月1日着任）

甲田 信一（助教）
TANG, Zhiye（助教）
CHANDRA, Amalendu（学振外国人招へい研究者）
小泉 愛（特任研究員）
ZHU, Zhe（大学院生）
千葉 史朱香（事務支援員）

A-1) 専門領域：物理化学, 理論化学

A-2) 研究課題:
 a) 生体分子系の機能に関する理論研究：時計タンパク質KaiCにおける概日リズム
 b) 生体分子系の機能に関する理論研究：光合成タンパク質における励起エネルギー移動
 c) 凝縮系反応に関する理論研究：遅い揺らぎの中で進む構造変化・反応ダイナミクス

A-3) 研究活動の概略と主な成果
 a) 生体分子系の機能に関して、シアノバクテリアにおけるKaiCの概日リズムの解析を進めている。KaiB-KaiC複合体形成は、ATP加水分解により生じるADPのC1ドメインへの結合により起き、逆反応であるADP/ATP交換の阻害により複合体形成が促進される。周期決定に重要な過程である。KaiB-KaiC複合体形成速度のKaiCリン酸化依存性に関する実験結果および仮説に基づき、KaiCにおけるATP加水分解、ADP/ATP交換、構造変化を考慮した反応モデルを構築した。このモデルにより、ADP/ATP交換の抑制によるKaiB-KaiC複合体形成の加速にKaiCの多量体性の重要性を明らかにした。

b) 生体分子系の機能に関して、高等植物の光化学系II光捕集アンテナ複合体LHCIIにおける励起エネルギー移動・散逸に関する解析を進めている。励起エネルギー移動の解明には、LHCII中のクロロフィルの励起エネルギー分布の揺らぎの知見が不可欠である。一般的に、クロロフィルやカロテノイドのような大きな分子の電子状態計算には密度汎関数理論(DFT)や時間依存密度汎関数理論(TD-DFT)が用いられる。しかし、DFT計算に用いられるパラメータは小分子に対する結果から決定されており、大きな分子に対する電子状態の適切な記述、とくに、分子周囲の環境の違いによる電子状態変化の記述は困難である。そこで、最近我々は、誘電率の異なる複数の溶液中のクロロフィル分子の電子状態計算に基づき、DFT/TD-DFT計算に用いるクロロフィル分子のパラメータを決定し、様々な環境下に存在するクロロフィル分子の励起エネルギーを適切に記述する電子状態計算を可能にした。現在、LHCII中のクロロフィル分子の電子状態計算の結果を再現する分子動力学(MD)計算のためのパラメータの開発を進めている。また、励起エネルギー散逸の解明には、クロロフィル分子に加えてカロテノイド分子の電子励起状態の知見も不可欠である。TD-DFT計算では二電子励起を考慮せず、二電子励起配置が重要となるカロテノイド分子の最低電子励起状態を適切に記述することができない。そこで、まず我々は、二電子励起を考慮した理論をDFT計算に適用した。
実装した。また、LHCII 中の多様な局所環境下にあるカロテノイド分子の電子状態を記述するため、カロテノイド分子の DFT 計算のパラメータを適切に決め直す必要がある。パラメータの決定に向け、現在、複数の溶液中におけるカロテノイド分子の励起状態の計算を行い、実験結果との比較を行っている。

c) 凝縮系の構造変化・反応に関して、過冷却液体の構造変化や生体分子系の反応の解析を進めている。とくに、非ボアソーン過程で表される反応と遅い運動の競合（動的乱れ）の解明を目指している。過冷却液体に関して、温度低下に伴い構造変化の頻度の大きなばらつき（真のレアイベント）で特徴づけられる再生過程に遷移し、弱エルゴード性の破綻の前兆を示すことを明らかにした。現在、温度とともにボアソーン過程から再生過程へと遷移過程が変化する過冷却液体の構造変化が分子論的にどのように起こっているのか、とくに、状態や反応経路の多様性の変化の解明に向けた解析を進めている。

B-1) 学術論文

B-7) 学会および社会的活動

学会役員等
分子科学会運営委員 (2022–2024).
日中韓理論化学ワークショップ幹事 (2013–).
学会の組織委員等
文部科学省、学術振興会、大学共同利用機関等の委員等
その他
森野基金 運営委員会委員 (2020–).
計算物質科学協議会 運営委員会委員 (2020–).

B-8) 大学等での講義、客員
Indian Institute of Technology Kanpur, 客員教授, 2020年4月–2025年3月.
B-10) 競争的資金
科学研究基盤研究(A)、「高等植物の光捕集アンテナタンパク質における効率的励起エネルギー移動の理論研究」、斎藤真司 (2021年度−2025年度)。
科学研究若手研究、「シアノバクテリア時計タンパク質振動子の出力分子機構の理論的解明」、甲田信一 (2022年度−2024年度)。

B-11) 産学連携
受託研究、(株)ダイセル、「木質バイオマスの溶解シミュレーションに関わる共同研究」、斎藤真司 (2022年度)。

C) 研究活動の課題と展望
我々は、生物分子系の機能および凝縮系のダイナミクスに関する理論研究を進めている。これらの研究に関する展望は、以下の通りである。

a) 生物分子系の機能に関する研究の1つとして、時計タンパク質 KaiC の周辺リズムの分子機構の解明に向け、様々なスケールでの解析を行っている。とくに、周期の決定に重要な KaiB と KaiC の複合体形成について数理モデルや分子動力学 (MD) 計算に基づく研究を進める。さらに、これらの結果をもとに、周辺リズムに対する包括的な数理モデルの構築を目指す。

b) 生物分子系の機能に関する2つ目の研究として、電子状態計算、MD 計算、密度行列の時間発展などを駆使し、高等植物の LHCII における励起エネルギー移動・散逸機構の解析を進めている。励起エネルギー移動に関しては、LHCII 系に対する適切な MD 計算を行うため、LHCII 中の個々のクロロフィル分子の電子状態を適切に再現する MD 計算のパラメタの決定を進めている。これらのパラメタを決定し、MD 計算により励起エネルギーおよびその揺らぎ、エキシトンの密度行列の時間発展などを解析することにより、LHCII における効率的励起エネルギー移動の機構の解明を目指す。

c) 凝縮系のダイナミクスに関する研究として、化学反応論、確率過程論、計算科学的解析に基づき、凝縮系における構造変化や反応が如何に起こっているのかについて解析を進めている。これらの系では、系の熱力学的性質などにより構造変化や反応の時間スケールおよび動的過程の性質が変化し、定数と仮定していた反応速度が時間とともに大きく変動するようになる。(過冷却)液体の構造変化に現れる分野や反応形態を適切に決定し、動的過程の変化に伴う反応途径分布の変化や分類される状態の変化、さらに、fragility (ダイナミクスの温度変化) の異なるモデル過冷却液体における構造変化ダイナミクスの変化などの解明を目指す。また、このアイデアを生物分子系における生物酵素反応に展開し、基質分子の様々な濃度における生物分子系の反応の様相の変化の解明、それらの起源などの解明もを目指す。
専門領域: 計算材料学, 物性物理学

研究課題:

a) 固体におけるフォノン物性: 電子フォノン相互作用及び熱物性
b) 吸着原子・分子が生み出す新奇界面磁性

研究活動の概略と主な成果

a) フォノンは格子振動の量子であり、電気抵抗、超伝導体をもたらすクーパー対形成、絶縁体における熱伝導など、固体物理学の各所で重要な役割を果たしている。これらの物性は、電子とフォノン、そしてフォノンとフォノンの相互作用によって決定されている。我々は特に、これらの相互作用が伝導特性や熱物性に与える影響に着目している。電子フォノン相互作用については、密度汎関数摂動理論を用いた相互作用強度の定量計算に加え、電子とフォノンのボルツマン方程式に基づいた、電子系からフォノン系へのエネルギー移行を追跡するためのプログラム開発を行った。それをバルク Si に適応し、高電界下でのドリフト速度の飽和を再現するだけでなく、電子キャリアとホールキャリアのジュール熱生発に寄与するフォノンモードが異なることを明らかにした。固体の熱物性については、アモルファス材料における研究を進めている。アモルファスの構造の特徴と熱伝導率を結びつけるために、パーシステントホモロジー群を用いて、トポロジカルな特徴を定量的に抽出し、それと熱伝導率を結びつける回帰モデルが作成できることを示した。

b) 分子吸着が表面物性に様々な影響を与えることは、表面科学の分野では広く知られている。我々はこれまで、磁性を持った原子や分子が吸着した際の近藤効果の発現を中心に理論的研究を進めてきた。本年は、さらにそれを発展させ、超伝導体である Pb(111) 表面上の Tb 錯体分子における特異な電子状態の研究を実験グループと共同で行った。ターゲットとした錯体分子は、2 つの Tb 原子がフタロシアニン骨格3つに挟まれたトリプルデッカー構造を取る Tb₂Pc₃ である。この分子は、単体では Tb の f 軌道以外のスピンを持たないが、Pb(111) 表面上では電荷移動にともない、フタロシアニンリガンド部位に不対電子が生じることが判明した。さらに、この不対電子が持つスピンが Pb(111) 中の電子と相互作用することによって、超伝導体中のクーパー対形成と、伝導電子と磁性不純物間の近藤効果の拮抗によって現れる Yu-Shiba-Rusinov (YSR) 束縛状態を生じていることが判明した。先行研究では、微分コンダクタンスの測定結果には、不対電子が 1 つであれば、YSR 束縛状態の形成によってギャップ内にピークのペアが 1 つ現れることが報告されている。しかし Pb(111) 表面上の Tb₂Pc₃ では、不対電子が 1 つであるにも関わらず、ピークのペアが 2 つ現れた。そこで、電子状態を第一原理計算によって詳細に解明した結果、不対電子が入る軌道の 2 重容積が表面吸着の際のひずみによって僅かに解けることで、1 つの軌道が価数振動状態になり、その結果低エネルギー励起で遷移できる状態が増えたことによって追加のピークが現れていることが判明した。軌道自由度とスピン自由度の結合が、YSR 束縛状態にも変調を与える例である。
B-1) 学術論文

B-3) 総説．著書

下出 敦夫, 「スピン流によらないスピンホール（ネルンスト）効果の定式化」, 日本物理学会誌, 78(3), 146–151 (2023). DOI: 10.11316/butsuri.78.3_146

B-4) 招待講演

南谷英美, 「発熱と熱輸送の第一原理計算」, 日本表面真空学会 2022年度関東支部講演会, オンライン開催, 2022年4月.

E. MINAMITANI, “Relationship between structural characteristics and thermal conductivity in covalent amorphous solids,” The 26th SANKEN International Symposium, Osaka (Japan) (Hybrid), January 2023.

研究活動の現状

B-7) 学会および社会的活動
学協会役員等

日本表面真空学会ダイバーシティ推進委員会委員(2018–).

B-8) 大学等での講義、客員
理化学研究所、客員研究員、2021年4月–2024年3月。
東京大学物性研究所 MP-CoMS、オンライン講義「マテリアルズ・インフォマティクスの基礎と応用」、2022年9月。
東京理科大学理学部、オンラインセミナー講師、「スピン流によるスピンNernst効果」、2022年7月。（下出敦夫）
東京大学物性研究所、セミナー講師、「スピン流によるスピンHall効果・スピンNernst効果」、2022年10月。（下出敦夫）
東京工業大学理学院、セミナー講師、「スピン流によるスピンHall効果・スピンNernst効果」、2022年12月。（下出敦夫）

B-10) 競争的資金
科研費基盤研究(B)、「データサイエンス技術を活用した二次元アモルファス材料における熱物性の理論研究」（代表：南谷英美）、下出敦夫（研究分担者）（2021年度–2024年度）。
科学技術振興機構さきがけ研究、「構造トポロジー情報を応用した柔軟な機械学習力場の構築」、南谷英美（2021年度–2024年度）。
科研費基盤研究(C)、「曲がった時空における波束の半古典論の構築と非線形応答への応用」、下出敦夫（2022年度–2024年度）。
科研費基盤研究(B)、「層状物質とその局所構造におけるフォノン関連物性の理論解析」（代表：渡邉 聡）、南谷英美（研究分担者）（2019年度–2022年度）。

C) 研究活動の課題と展望
トポロジカルデータ解析を用いた、アモルファス材料を始めとする乱れを含んだ系へ研究を進めている。実際に、パンフレットホモロジーの情報が物理量と相関を持つことが見えてきており、乱れた複雑な系での物理現象に取り組む有望なテクニックであるという手応えを感じている。これまでの熱物性を主な対象としてきたが、弾性定数といった力学特性に対しても応用を広げていきたい。さらに、機械学習ポテンシャルなどこの技術を応用するためには、異なる構造におけるパンフレットホモロジーのあいだの距離をどのように定義するか、その距離を用いて損失関数をどう設計するかの部分に工夫が必要である。近年、画像認識の分野ではこの課題に対して最適輸送理論やWasserstein距離を用いた事例が報告されている。先行している分野での進展をキャッチアップして物性科学に応用していきたい。

＊) 2022年9月1日大阪大学産業科学研究所教授
理論分子科学第二研究部門

石崎章仁（教授）（2016年4月1日着任）

三輪邦之（助教）
布能謙（特任助教（分子科学研究所特別研究員））
坂本想一（特任研究員）
YAN, Yaming（特任研究員）
赤羽厚子（事務支援員）
増田道子（事務支援員）

A-1）専門領域：理論物理化学

A-2）研究課題：

a）光・量子科学技術に基づく複雑分子系の観測と制御の理論研究

A-3）研究活動の概略と主な成果

a）量子光は、レーザーやなどの古典的な光には無い特有の性質を持ち、分光計測などに対する光の非古典性の巧みな適用法を見出することで、光計測技術は革新的な発展を遂げる可能性がある。本研究課題では、複雑分子系の動的過程を時間分解計測することを念頭に、量子光の一種である量子もつれ光子の非古典相関を利用する量子分光計測の理論研究を取り組んでいる。これまでに我々は、ポンプ光にCWレーザーを用いたパラメトリック下方変換（PDC）によって発生させた周波数もつれ光子対を光源とする時間分解スペクトルの定式化を行ってきた。本年は、複雑分子系の動的過程の観測に対する本手法の有用性を明らかにするため、光合成色素タンパク質複合体の一つFenna-Matthews-Olson（FMO）複合体における時間分解スペクトルの詳細な数値解析を行った。FMO複合体内の色素分子が吸収する周波数帯域のもつれ光子対の発生方法としては、β-BaB_{2}O_{4}結晶、周期分極反転KTiOPO_{4}結晶などの非線形光学結晶によるPDC過程を考えた。解析の結果、もつれ光子対の周波数分布は信号処理におけるsincフィルターとして機能し、PDC過程における位相整合条件の調節によってFMO複合体のスペクトル上の特定のピークを選択的に増強できることを示した。したがって、本手法は、複雑分子系における動的過程を電子状態ごとに追跡するのに利用できると期待される。また、この周波数フィルター機能は現在のもつれ光子発生技術の範囲で分光計測に実現可能であることを明らかにした。

b）分子と光の相互作用は、分子の物性やそこで進行するダイナミクスを観測する上だけでなく、それらを制御する上においても重要な役割を果たす。近年、微小光共振器に閉じ込められた光や、金属ナノ構造の表面近傍で励起されることの局在表面プラズモンと、分子を強く結合させることによりポラリトンを形成させ、系の物性を制御する試みが盛んに行われている。分子の集団を用いた強結合系の場合、分子の分極の位相が揃った少数の状態がポラリトンの形成に寄与し、残りの多くの状態はポラリトン形成を介した特性制御の影響をほとんど受けないか、所望する制御の阻害要素になりうる。単一分子を用いた強結合系においては、光学特性を調べた先行研究が報告されている一方、電界発光や光誘起電流発生といった光電変換を調べた研究はほとんど報告されていない。また、分子の電界発光を利用する有機発光ダイオードにおいては、その材料として熱活性化遅延蛍光を示す分子が注目されている。このような分子では、第一励起一重項（S_{1}）状態と三重項（T_{1}）状態のエネルギー差が小さく、また、基底状態との間の遷移
における振動子強度が T_1 に比べ S_1 の方が数桁大きいことが知られている。本研究では、上記の特性を持つ分子一
個を用いた強結合系に着目し、ポラリトン形成を通して単一分子の電界発光特性を制御する方法を提案した。ポラ
リトン形成には S_1 が支配的に寄与し、ポラリトンと T_1 のエネルギー位置の関係や、S_1 と電磁場モードの離調および
結合強度により、発光特性が変化することを示した。現在、解析を進め、発光効率を向上させるための設計指針を
提示することを試みている。

e) 近年、超電導量子ビット系などの量子系で熱流を測定することが可能となってきた。このような実験の進展に伴い、
系の非平衡ダイナミクスに伴う熱・仕事のエネルギー変換効率の限界や、熱力学的不可逆性を特徴づけるエントロ
ピー生成を最小化する手法などが、基礎原理の理論的解釈や実験への応用という立場から注目を集めている。しかし、
微小量子系では熱ゆらぎに加えて量子ゆらぎも無視できず、ゆらぎの熱力学の理論を量子系に拡張する必要に迫
られる。我々は、量子ブラウン運動による非マルコフダイナミクスを基軸として、ゆらぎの量子熱力学の構築に関す
る理論的研究に取り組んでいる。特に、熱浴の自由度を縮約したシステムの時間発展を記述する手法の一つである
超演算子形式に着目し、エンタロピー生成の表式を求めた。エンタロピー生成は熱力学における最も重要な量の一つ
であるため、非マルコフ過程での厳密な表式が得られたことは重要なものと認識される。さらに、エンタロピー生成が
非負であること（熱力学第二法則）を証明することで、量子系の熱力学的不可逆性の物理的意味を明らかにしよう
としている。現状では、熱浴とシステムの相互作用が十分弱い弱結合領域で証明が完了し、現在は一般的な場合に
拡張を行っている。

B-1) 学術論文
MURANAKA, M. UCHIYAMA and Y. KIM, “Orbital-Resolved Visualization of Single-Molecule Photocurrent Channels,”
Nature 603(7903), 829–834 (2022). DOI: 10.1038/s41586-022-04401-0

B-4) 招待講演
石崎章仁,「Quantum Biophysics: Old Roots, New Shoots」.量子科学技術研究開発機構関西光科学研究所90th KPSI
Seminar, 木津市, 2022年7月.
A. ISHIZAKI, “TBA,” WATOC 2020 12th Triennial Congress of the World Association of Theoretical and Computational
Chemists, Vancouver (Canada), July 2022.（スケジュールの不都合によりキャンセル）
A. ISHIZAKI, “Investigating Excited-state Dynamics in Molecules with Quantum Entangled Photons,” The 22nd International
Conference on Ultrafast Phenomena, Montreal (Canada), July 2022.
A. ISHIZAKI, “TBA,” In-Person TSRC workshop: Spatio-Temporal Dynamics of Excitons: Bridging the Gap Between
Quantum Mechanics and Applications, Telluride, Colorado (USA), September 2022.（スケジュールの不都合によりキャンセル）
A. ISHIZAKI, “Theoretical study on quantum dynamics in condensed phase molecular systems,” Quantum Innovation 2022:
The International Symposium on Quantum Science, Technology and Innovation, Tokyo (Japan), November 2022.

B-7) 学会および社会的活動
学協会役員等
量子生命科学会 学術委員会委員 (2019–2024)
文部科学省・学術振興会・大学共同利用機関等の委員等
文部科学省科学技術・学術政策研究所科学技術動向研究センター専門調査員（2015–）。
東京大学物性研究所協議会委員（2022–2024）。

B-8) 大学等での講義、客員
関西学院大学、非常勤講師, 2022年4月–2023年3月。
総合研究大学院大学物理科学研究科、「基礎物理化学II」, 2022年7月。
理化学研究所、客員研究員, 2020年12月–2023年3月。（三輪邦之）

B-10) 競争的資金
科研費基盤研究(B), 「量子分子計測と動力学解析の理論基盤」, 石崎章仁（2021年度–2024年度）。
科研費若手研究, 「単一分子接合系における光・電子・スピンの超高速ダイナミクスに関する理論的研究」, 三輪邦之（2021年度–2024年度）。
文部科学省光・量子飛躍フラッグシッププログラム（Q-LEAP）, 「Flagshipプロジェクト：量子生命技術の創製と医学・生命科学の革新」（代表：馬場嘉伝）, 「量子論的生命現象の解明・模倣」, 石崎章仁（研究分担者）（2020年度–2022年度）。
文部科学省光・量子飛躍フラッグシッププログラム（Q-LEAP）, 「基盤基盤研究：複雑分子系としての光合成機能の解明に向けた多次元量子もれ分光技術の開発」（代表：清水亮介）, 石崎章仁（研究分担者）（2018年度–2022年度）。

C) 研究活動の課題と展望
現在のグループメンバー（日本人PD、助教、特任助教、外国人PD）がすべて最近2年（それぞれ2021年4月、2021年12月、2022年7月、2022年8月）に着任しており、2022年4月～2023年3月は研究活動・成果を論文として発表することが困難な期間となったが、現在3報の論文を投稿中、1報の論文を投稿準備中である。理論研究に耐えうる卓越した若手人材を定常的に確保することは今後も重要な課題となる。
生体及び有機物質系における励起子及び電荷移動などの動力学過程は、周囲の溶媒、タンパク質、分子の核運動等の影響を受けることによって多様かつ多様な機能を生み出しており、その全容を明確に理解することは物理学の最も魅力的な問題の一つである。このような複雑な相互作用により生ずる非自明な機能を理解するためには、各動力学過程における様々な要素の適切な理論的取り扱いが必要である。我々は、量子分散系のダイナミクス理論を用い、または新たに展開させ、複雑な分子系における物理現象の本質的かつ簡明な理解を得ることを目指している。また同時に、最新の量子科学技術を適用することで、従来技術と比較してより詳細な分子系の情報を得ることが可能な手法の開発に向けて研究を進めている。

160 研究活動の現状
計算分子科学研究部門

江 原 正 博（教授）（2008年6月1日着任）

ZHAO, Pei（特任研究員）
金澤 憲紀（特任研究員）
稻井 直人（特任研究員）
杉本 縁（事務支援員（派遣））

A-1) 専門領域：量子化学、理論化学、触媒化学、光物性科学

A-2) 研究課題：
 a) 量子逆設計理論による分子－金属ナノ粒子系の光物性の最適化
 b) 細胞内でリン光発光するCAu₆Ag₂クラスター：発光のメカニズムと量子収率の理論解析
 c) 凝縮相銀ナノクラスターのゲスト分子によるキラリティ反転制御の機構
 d) 修飾単層カーボンナノチューブの置換基による発光波長制御
 e) 白金族担持微粒子触媒によるNO活性化の担体効果に関する系的な理論解析
 f) 薄膜太陽電池の界面の安定化による光電変換効率の向上に関する理論解析

A-3) 研究活動の概略と主な成果
 a) 分子の光物性は金属ナノ粒子近傍で大きく増幅され、分子－金属ナノ粒子系は多様な光機能を持つ。分子－金属ナノ粒子系の機能のポテンシャルを引き出すには、適切な設計指針が必要である。本研究では、量子逆設計理論および量子最適制御理論を開発、実装し、所望の光物性を持つ最適な分子－金属ナノ粒子系の設計を行った。逆設計理論では、「機能空間」の勾配に基づく最適化と探索を行い、「化学空間」の設計を行う。本研究では、分子を時間依存配置間相互作用法で記述し、金属ナノ粒子を誘電体モデルに基づく境界要素法で記述した分子－金属ナノ粒子系を表現し、各要素の最適化問題に帰着した。また、入射電場は量子最適制御理論で最適化した。これらの理論により、分子－空間配置、金属ナノ粒子の金属種・形状、入射電場の最適化に成功した。本手法は、分子－金属ナノ粒子系と入射電場の設計方法として有望であり、分子プラズモニクスシステムへの適用が期待される。

 b) 発光性金属ナノクラスターは、配位子構造や金属の種類・核数や配列により、クラスター構造に特異な物性が発現することが期待される。本研究では、含窒素複素環状カルベン（NHC）配位子を用いた炭素中心金銀（CAu₆Ag₂）クラスターを設計、合成し、このクラスターが溶液中で強いリン光を発光することを見出し、NHC配位子がリン光発光に寄与することを理論計算により明らかにした。また、スピン軌道相互作用を含む解析によって発光速度変数を算出し、最小エネルギー障壁でのエネルギーを量子収率を議論した。さらに、この発光寿命の長いリン光性金銀クラスターを細胞イメージングに用いたところ、細胞への取込みの経路や特定の細胞内に局在することが明らかになり、従来のホスフィン配位子の非選択的な取込みとは異なる優れた機能が確認された。これらの結果から、高設計性の配位子と金属イオンから成る多核金属イオンクラスターが、強リン光性の新物質群として、光バイオ分析の発展に貢献しうることを示した。
c) 金属クラスターは、キラリティを導入することで機能や応答性を付与することができる。本研究では、ゲスト分子の導入によって銀ナノクラスターのキラリティ制御を行った。銀ナノクラスターの合成にエンチオマー配位子であるα-ジヒドロリポ酸（DHLA）を用いると、銀-ジチオレート骨格からなる片手キラルなAg_{29}DHLA_{12}クラスターを生成することができる。さらに、ピリジン等の小さなルイス塩基分子をゲスト分子として導入し、右手系と左手系のナノクラスターの相対的安定性を速度論的に逆転させ、キラリティが逆転したナノクラスターを生成することに成功した。理論計算を用いて、ゲスト分子によってキラリティが逆転するメカニズムを明らかにした。このメカニズムは、ナノクラスター間の相互作用によるキラリティの自己制御や自己複製へと拡張される。

d) 単層カーボンナノチューブ（SWNT）に置換基を導入することによって、発光ピークは赤色シフトし、発光強度が向上する。しかし、化学修飾と発光波長の精密制御は依然として課題である。本研究では、SWNTを段階的に化学修飾することで、部位特異的な機能化がなされ、発光強度・波長を制御できることを実験および理論計算によって示した。数種類のキラル角をもつSWNTに対して、*Bu-SWNTs-**Buおよび*Bu-SWNTs-H付加体を合成し、それぞれE_{11}**発光およびE_{11}*発光が主に得られることを実証した。DFT/TD-DFT法により、SWNTの1,2-および1,4-付加体の熱力学的安定性と遷移エネルギーに基づいて発光を系統的に帰属した。その結果、付加基の立体障害とR値（n,m）-ナノチューブのR = mod(n−m,3)が、付加位置と局所バンドギャップの大きさを制御する重要な因子であることを示した。

e) 白金族金属は、自動車から排出される有害物質を低減するための三元触媒として広く利用されている。担持微粒子触媒では、金属微粒子と金属酸化物の界面が重要な役割を持つ。本研究では、NO結合活性化について、SrTiO₃、SrFeO₃、CeO₂、TiO₂、ZrO₂、γ-Al₂O₃担体と白金族金属クラスター（Pd, Pt, Rh）の組み合わせによる金属/酸化物界面についてSlab model DFT計算により系統的に研究した。金属クラスターに近い酸素空孔を一つ構築し、Mars van Krevelen機構による、NOの活性化を評価した。NOのO原子はNOの解離後に金属酸化物の酸素欠陥を埋め、N原子は金属クラスター上に残される。酸素欠陥がある場合、NOの活性化では発熱過程が確認され、金属クラスターと酸素欠陥の相互作用が重要であることが示された。

f) 薄膜太陽電池の界面は、デバイスの効率と耐久性を決定する上で極めて重要な役割を担っている。本研究では、実験的にペロブスカイト表面をピペラジン（PP）で処理すると電荷抽出が促進され、C₆₀ピロリジントリスアシッド（CPTA）で処理するとヒステリシスが減少し、光変換効率が最大22.7%に増強されることを見出した。さらに、DFT計算によってペロブスカイト表面のAサイト空孔はPP²⁺カチオンによって安定化され、CPTAは表面のヨウ化合物空孔に吸着することを示した。また、Pb²⁺よりもSn²⁺の方が欠陥形成エネルギーが低いため、CPTAは膜表面のSn²⁺サイトに優先的に結合することを示した。

B-1) 学術論文

研究活動の現状

B-4) 招待講演

江原正博, 「Theoretical Studies on Photofunctional Systems and Heterogeneous Catalysts (English)」第 41 回 CMD3 ワークショップ (先端事例講義), 大阪大学エマージングサイエンスデザイン R1 センター, オンライン開催, 2022 年 9 月.

江原正博, 「分子集合体・金属クラスターのキラル光物性に関する理論的研究」, 計算アストロバイオロジー 2022, 筑波, 2022 年 11 月.

江原正博, 「不均一系触媒・クラスター触媒の理論・計算科学」, 触媒学会界面分子変換研究会ワークショップ「固体触媒の活性構造を知る」, オンライン開催, 2022 年 11 月.

江原正博, 「DFT・TDDFT 法の基礎：分子系・金属クラスター系のキラル光物性の理論計算」, キラル光物質科学第 1 回トレーニング工房, オンライン開催, 2022 年 12 月.
江原正博,
「励起子結合法と量子逆設計理論の光物性への応用」
キラル光物質科学第1回トレーニング工房, オンライン開催, 2022年12月.
江原正博,
「多孔性分子結晶PdII-MMF による光照射オレフィン移動反応の反応機構」
IQCE 量子科学探索講演会2022「量子化学で探る化学の最先端」オンライン開催, 2023年1月.
江原正博,
「分子集合系と金属クラスターの光物性に関する理論研究」
ワークショップ「キラルな光とキラルな物質」大阪, 2023年3月.

B-7) 学会および社会的活動

学会機関等
触媒学会界面分子変換研究会世話人会委員 (2021–).
量子化学研究協会理事 (2006–).

学会の組織委員等

文部科学省, 学術振興会, 大学共同利用機関等の委員等
日本学術振興会学術システム研究センター専門研究員 (2020–2024).
東京大学物性研究所計算物質科学研究センター運営委員会委員 (2020–2024).
東北大学金属材料研究所共同利用委員会および採択専門委員会委員 (2021–2025).

学会誌編集委員
Journal of Computational Chemistry, Editor-in-Chief (2012–).
Theoretical Chemistry Accounts, Editorial Board (2015–).
The Chemical Record, Editorial Board (2015–).
B-8) 大学等での講義、客員
大阪大学,非常勤講師,2022年4月–2022年9月.

B-10) 競争的資金
科学研究基盤研究(B),「先進的量子状態理論に基づく不均一系触媒および光機能システム系の研究開発」,江原正博(2020年度–2022年度).
日本学術振興会学術動向等に関する調査研究,「基礎物理化学関連分野に関する学術研究動向—複雑系の理論・計算科学の新たな潮流と展開—」,江原正博(2022年度).
科学研究費基盤研究(A),「超螺旋光に基づく高次元光の量子設計理論」,江原正博(2022年度–2026年度).
科学技术振興機構CREST研究,「多元素金属イオンクラスターの精密設計と自在配列が拓く新物質科学」(代表:塩谷光彦),江原正博(共同研究者)(2022年度–2027年度).

C) 研究活動の課題と展望
我々は,高精度電子状態理論を基盤として,光機能性分子の電子過程や金属微粒子・バルク触媒を主たる対象とした理論研究を実施し,新しい化学概念を構築することを目的として研究を進めている。近年,電子状態理論では大規模化が進展し,ナノ材料やバイオ系への応用が展開している。しかし,複雑な励起状態や固体表面などに対して信頼性のある情報を提供できる理論は未だ開発途上にあり,さらに開発を進める必要がある。高機能化と大規模化の観点から我々の方法を発展させるとともに,固体表面を高精度に記述できる理論開発を行う。光機能性分子の電子過程の研究では,励起状態における構造緩和や分子間相互作用について検討し,分子システムとしての機能設計へと展開する。分子系・分子集合系の非対称性に関わる励起子相互作用や非対称因子,錯体光化学反応に関する理論研究を実験と協力して進める。2022年度から,学術変革領域研究(A),「光の螺旋性が拓くキラル物質科学の変革」が発足した。量子逆設計理論を用いて,超螺旋光に基づく高次元光の理論解析・設計に関する研究を推進する。また,CREST「多元素金属イオンクラスターの精密設計と自在配列が拓く新物質科学」では,多元素金属イオンクラスターの光性や触媒反応活性について理論解析・設計の研究を推進する。
研究活動の現状

奥 村 久 士（准教授）（2009年5月1日着任）

伊藤 暁（助教）
谷本 勝一（学振特別研究員）
福原 大輝（大学院生）
大多和 克紀（大学院生）
川口 律子（事務支援員）

A-1) 専門領域：理論生物物理学、理論化学物理学

A-2) 研究課題：
a) アミロイドβペプチドの凝集初期過程の解明
b) 赤外線レーザーによるポリアラニンのアミロイド線維破壊の分子動力学シミュレーション
c) 温度とレプリカの組み合わせをランダムに並べたリストを用いるレプリカ置換ソルトトンバリング法の開発
d) ポリフェノールによるアミロイドβフラグメント凝集阻害効果を解明するレプリカ置換ソルトトンバリングシミュレーション
e) 生体膜上の流れを再現する分子動力学シミュレーション手法の開発

A-3) 研究活動の概略と主な成果
a) アルツハイマー病はアミロイドβ（Aβ）ペプチドの凝集体が原因で発症する。Aβには42残基からなるAβ42と40残基からなるAβ40の2種類がある。Aβ42の方が凝集速度が速く毒性も高いが、その理由は明らかではなかった。我々は独自に開発してきた分子動力学手法を使ってまずAβがβヘアピン構造を形成している時に凝集しやすいことを発見した。次にAβ42の方がβヘアピン構造を取りやすく、そのため凝集しやすいことも明らかにした。さらに、凝集を促進しているのは5番目のアミノ酸であるアルギニンであることを理論的に予言した。この理論的予言の真偽を検証するために加藤晃一グループに依頼してArg5を変異したAβについて凝集実験を行ってもらった。その結果、変異体では凝集が大幅に抑制されることが明らかとなり、シミュレーションで予測された通りの結果を得ることができた。様々な物質について理論的手法で実験結果を説明する研究は数多くあるが、実験結果を事前に予言する理論研究は少ない。特に病気の原因物質については他に皆無であり、我々は病気の発症機構を予言する理論・計算化学のフロントランナーとなっている。
b) 昨年度、我々は赤外線レーザーを照射してAβアミロイド線維を破壊する非平衡分子動力学シミュレーションを行い、分子がアミロイド線維を破壊する新たな機構を発見した。今年度はポリアラニンのアミロイド線維を赤外線レーザー照射により破壊する非平衡分子動力学シミュレーションを行った。ポリアラニン病は長いアラニン鎖を含むタンパク質が凝集することで発症し、手足の多指症、合指症などを引き起こす。シミュレーションの結果、Aβアミロイド線維よりもポリアラニンのアミロイド線維の方が破壊されにくいことが分かり、この原因を次のように解明した。アミロイド線維の破壊は、レーザーパルスが照射される度にC=OとN–Hの間の分子間水素結合が切断され、その隙間に水分子が入り込むことで起こる。ポリアラニンには疎水性が残基しかないため、アミロイド線維の周囲に水分子が少なくて、C=OとN–Hの間の分子間水素結合が破壊された後にその再形成が阻害されにくい。このためポリアラニンのアミロイド線維の方が破壊されにくいのである。
c) 生体分子のように複雑な自由エネルギー地形を持つ系でも効率良くその構造を探索できるシミュレーション手法である「レプリカ置換法」を我々は開発してきた。この方法では異なる温度を持つ系のコピー（レプリカと呼ぶ）を複数用意し，シミュレーションの途中で3つ以上のレプリカ間で温度を置換する。さらに昨年度，溶媒の自由度にのみ注目するレプリカ置換法である「レプリカ置換ソルートテンパリング法」を開発し，巨大な分子系にも対応できるよう，その適用範囲を広げることに成功した。この手法はレプリカ交換法など他の類似の手法よりも短時間に様々な構造データを収集でき，最も優れた構造探索手法である。また，従来のレプリカ置換法では，温度とレプリカの組み合わせを系統的に並べたリストを用いており，このリストを用いたレプリカ交換ソルートテンパリング法では，大きなレプリカ番号を持つレプリカで遷移確率が減少するという問題点が見つかった。この問題の原因を解明し，さらに解決するため，温度とレプリカの組み合わせをランダムに並べたリストを用いるレプリカ置換ソルートテンパリング法を開発した。その結果，全てのレプリカにおいて遷移確率を上昇させることに成功した。

d) ポリフェノールはAβペプチドの凝集を阻害する効果がある。我々はレプリカ置換ソルートテンパリング法をAβフラグメントとポリフェノールの系に適用して，凝集阻害のメカニズムを明らかにした。ポリフェノールにはミリセチン，ロスマリン酸の二種類を用いた。ミリセチンにはミリセチン，ロスマリン酸を異なった温度で用いた。ミリセチンではミリセチンとロスマリン酸が相互作用することで，Aβフラグメントとミリセチンとロスマリン酸の相互作用を形成することを示した。ミリセチンとロスマリン酸はAβフラグメントの親水性残基と，フェニルアラニンはAβフラグメントの疎水性残基と相互作用をすることが見られた。一方，ロスマリン酸は，Aβフラグメントのグルタミン酸およびリジンと親水性相互作用をすることがわかった。このことから，ミリセチンとロスマリン酸は異なるメカニズムでAβフラグメントの凝集を阻害していることを明らかにした。

e) 生体膜表面で溶液の流れを発生させるための非平衡分子動力学シミュレーション法を開発した。この手法では生体膜の重心をラグランジュ未定乗数法で固定しながら，生体膜上の溶液には一定の加速度を加えることで生体膜上の流れを作り出している。この手法を用いてジミリストイルホスファチジルコリン（DMPC）二重膜上のNaCl溶液の流れのシミュレーションを行った。その結果，系内の温度を一定に保ちながら溶液に放射線状の流れ場を作ることに成功した。また，DMPC二重膜の重心を固定されながらも揺らぎを生じさせることができた。

B-1) 学術論文

B-3) 総説，著書

B-4) 招待講演

奥村久士，「各種統計アンサンブルの生成法」，第16回分子シミュレーションスクール－基礎から応用まで－，岡崎市，2022年9月。

奥村久士，「アミロイドβペプチド凝集体の非平衡分子動力学シミュレーション」，Mie Meeting of Quantum Science，津市，2022年12月。

奥村久士，「非平衡分子動力学シミュレーションで見る極限環境下におけるアミロイド線維破壊」，第63回高圧討論会シンポジウム：高圧力および関連する極限環境下の化学・生物・生命科学，茨木市，2022年12月。

奥村久士，「アミロイド線維の非平衡分子動力学シミュレーション」，山形大学理学部 離散数理セミナー，山形市，2022年12月。

奥村久士，「生体機能に重要な分子の全原子分子動力学シミュレーション」，Biothermology Workshop 2022，静岡市，2022年12月。

奥村久士，「病気の原因となるタンパク質の分子動力学シミュレーション」，企業研究会第36期CAMMフォーラム本例会，東京都港区，2023年2月。

奥村久士，「生命分子動態シミュレーション研究グループの最近の研究について」，ExCELLS カルティデベロップメント，蒲郡市，2023年2月。

奥村久士，「物質～生命の境界探査ための分子動力学シミュレーション」，物質～生命の境界探査プラットフォーム2022年度報告会，岡崎市，2023年3月。

奥村久士，「アルツハイマー病の原因となるタンパク質凝集体の分子動力学シミュレーション」，慶應義塾大学理工学部物理情報工学科渡辺研セミナー，横浜市，2023年3月。

H. OKUMURA, “Disaggregation of amyloid-β aggregates observed by nonequilibrium molecular dynamics simulations,” 18th International Conference of Computational Methods in Sciences and Engineering, Heraklion (Greece), October 2022.
H. OKUMURA. “Protein aggregation and disaggregation by generalized-ensemble and nonequilibrium molecular dynamics simulations,” 4th International Conference on Materials Research and Innovation, Bangkok (Thailand), December 2022.

B-7) 学会および社会的活動
学協会役員等
日本物理学会名古屋支部役員 (2017–).
学会の組織委員等
日本蛋白質学会年会若手奨励賞審査委員 (2016–).
XXXIV IUPAP Conference on Computational Physics (CCP2023), Steering Committee member (実行委員) (2021–).

文部科学省, 学術振興会, 大学共同利用機関等の委員等
東京大学物性研究所スーパーコンピュータ共同利用委員会委員 (2016–).

理科教育活動
出前授業「分子研授業～授業の先に何があるのか～『病気に関わるタンパク質をコンピュータシミュレーションで観察する』愛知県立岡崎北高等学校あいちSTEMハイスクール研究指定事業 (2022).

その他
分子動力学シミュレーションの普及のため、奥村の講義を動画に収録して YouTube で無料公開した (https://www.youtube.com/watch?v=6B3BE7-iIPk)。これは動画公開のために改めてカメラの前で私が講義を行い、それを配信しているものである。合計16時間かけて分子動力学シミュレーションの基礎から発展的な内容まで系統的に説明している。昨年末に公開を始めて以来約3ヶ月で視聴回数は2200回を超え、大きな反響を得た。この回数は大学の講義動画としては異例の多さであり、全国の学生および若手研究者の育成に貢献している。

B-8) 大学等での講義、客員
総合研究大学院大学物理科学研究科, 「生体分子シミュレーション入門」, 2022年12月.
名古屋市立大学大学院薬学研究科, 客員准教授, 2019年4月–.

B-9) 学位授与
福原大輝, 「Development of calculation methods for proteins and their application to the inhibition of amyloid-β fragment aggregation」, 2023年3月, 博士 (理学).

B-10) 競争的資金
科研費基盤研究(C), 「レーザー照射によるアミロイド線維の破壊機構を分子動力学シミュレーションで解明する」, 奥村久士 (2021年度–2023年度).
科研費基盤研究(C), 「計算機シミュレーションによる脂質膜上でのアミロイドペプチドの凝集過程の解明」, 伊藤 暁 (2021年度–2023年度).
科研費若手研究, 「アルギニンによるポリグルタミンタンパク質の凝集阻害過程の理論研究」, 谷本勝一 (2021年度–2023年度).

研究活動の現状 169
C) 研究活動の課題と展望

a) 生体内は血液や細胞間液、細胞内液などの液体で満たされ、これらの液体は常に流動している。この流れがタンパク質のアミロイド線維化を促進していることが最近明らかになった。しかし、流れ場がアミロイド線維化を促進する機構はまだ分かっていない。そこで、今年度開発した流れを生み出す非平衡分子動力学シミュレーション手法を行って、流れによりアミロイド線維化が促進される理由を解明する。

b) 全長のAβペプチド(40および42残基)を32本水溶液中に配置した巨大系の分子動力学シミュレーションを行っている。これはAβペプチドに関する世界最大のシミュレーションである。これまでに1.6マイクロ秒の計算が終了し、現在その解析を行っている。このシミュレーションを通じて、単量体→二量体→三量体→四量体と凝集していく過程での構造変化を調べる。特にどのアミノ酸残基が凝集に重要な役割を果たしているのかを見つけ出す。

c) αシヌクレインの凝集には細胞膜との結合が重要である。そこでαシヌクレインのN末端領域が細胞膜に結合する過程の分子動力学シミュレーションを現在実行中である。数種類の細胞膜についてシミュレーションを行い、αシヌクレインが結合しやすい細胞膜とそうでない細胞膜の特徴とその理由も明らかにする。
A-1) 専門領域：理論生物物理学

A-2) 研究課題：
 a) 分子モーターの1方向性運動メカニズムの解明
 b) トランスポーターの輸送メカニズムの解明
 c) タンパク質が引き起こす細胞膜変形メカニズムの解明

A-3) 研究活動の概略と主な成果
 a) 分子モーターは、生体内でATP加水分解エネルギーなどの化学エネルギーを消費して、1方向性の運動をするタンパク質である。また、このような運動を阻害する因子が存在することが知られている。例として、回転モーターF_{1}-ATPaseの回転運動を阻害するIF1があるが、興味深いことに、阻害状態を解除するには合成方向に回転させる必要があり、ここで再び1方向性の運動が必要になる。この1方向性の阻害状態解除メカニズムを分子シミュレーションによって解明する。シミュレーション中に、回転子にトルクをかけて加水分解・合成方向のそれぞれに回転させて、阻害因子・回転子の相互作用、回転に伴う仕事等の観点から解析を行なっている。

 b) シュウ酸は多量に摂取すると、体内で尿管結石等の症状を引き起こす。このシュウ酸は腸内細菌により分解され制御されているが、その際シュウ酸を細胞内に輸送するのがシュウ酸トランスポーターである。このシュウ酸トランスポーターの原子レベル構造が岡山大・山下教授のグループで解かれた。我々は、山下教授のグループとの共同研究により、シュウ酸トランスポーターによる基質輸送の際の基質結合やトランスポーター構造ダイナミクスを量子化学・分子動力学計算を用いて取り組んだ。まず、基質結合サイトの量子化学計算により、結合したシュウ酸がねじれた構造を示していることを明らかにした。次に、トランスポーターの全原子分子動力学シミュレーションにより、閉塞状態から外向き開状態へ構造遷移する際に基質結合に関わる特定のアミノ酸残基とゲートの役割をしているアミノ酸残基の動きが重要でスイッチになっていることを同定した。さらに、構造変化に重要である部位の相互作用を人工的に弱めたシミュレーションにより、これまで未知であった内向き開構造が解明されつつある。

 c) 細胞膜は、多種多様なタンパク質と相互作用して、ダイナミックに変形する。例えば、エンドサイトーシスなどで見られるように一部切り離されて袋状構造（ベシクル）を作って細胞内外の物質輸送に使われる。このような細胞膜変形に関わるタンパク質が、膜を曲げるPacsin1や、GTP加水分解エネルギーを用いて膜を切断するダイナミンである。我々は、全原子シミュレーションより大規模で長時間のシミュレーションが可能な粗視化Go-MARTINIモデルの開発を行って、Pacsin1に応用することで、その構造揺らぎが正しく再現できることを示した。さらに、チューブ状膜とダイナミンの大規模多量体からなるシミュレーション系を構築して、ダイナミンによる膜切断の分子メカニズムを迫ろうとしている。
B-1) 学術論文

B-3) 総説、著書

B-4) 招待講演

K. OKAZAKI, “Molecular simulation and machine learning of rare-event conformational dynamics of biomolecular machines toward controlling their functions,” Sendai 2022, An Update on Molecular Machines: Open Challenges and New Perspectives. Sendai (Hybrid), 2022年8月。

岡崎圭一, 「分子シミュレーションによるトランスポータータンパク質の基質輸送メカニズムの解明」, 第95回日本生化学会大会, 名古屋市, 2022年11月。

K. OKAZAKI, “Molecular Simulation and Statistical Inference of Functional Motions of Biomolecular Machines,” The 5th R-CCS International Symposium: Fugaku and Beyond, Kobe (Hybrid), 2023年2月。

岡崎圭一, 「ベイズ推定によるモータータンパク質の化学力学共役メカニズム解明」, 第45回日本分子生物学会年会, 勝浦メッセ, 千葉市 (ハイブリッド開催), 2022年12月。

岡崎圭一, 「分子シミュレーションによるトランスポータータンパク質の基質輸送メカニズムの解明」, 令和4年度新学術領域研究「高速分子動画」シンポジウム, 淡路市 (ハイブリッド開催), 2022年11月。

B-7) 学会および社会的活動

学会の組織委員等

日本生物物理学会分野別専門委員 (2022–). （大賞 １年）
日本生物物理学会第 61 回生物物理学会年会実行委員 (2022–). （大賞 １年）
学会誌編集委員

B-10) 競争的資金
科研費基盤研究(B)。「細胞膜変形分子マシンの動作メカニズム：多量体形成と構造変化による膜変形の理論研究」
岡崎圭一 (2022年度–2025年度).

C) 研究活動の課題と展望
本グループでは、生体分子マシンの機能ダイナミクスを理論的な手法で解明して、そのデザイン原理を探求する研究を進めている。回転モーター F_{1}-ATPase の阻害因子 IF1 については、シミュレーションによる解析が進んでおり、その阻害メカニズムに基づいた変化等により新規阻害因子の開発に繋げたい。シュウ酸トランスポーターについては、今まで未知であった内向き開構造が明らかになりつつあるので、その構造遷移における律速過程や、内向き開構造における基質解離・結合過程について詳細な分子メカニズムを明らかにしていきたい。細胞膜変形については、細胞膜切断に関わるダイナミン多量体とチューブ状膜からなるシミュレーション系が構築できたので、膜切断の分子メカニズムの解明を目指す。その他、AlphaFold による高精度構造予測と分子シミュレーションを組み合わせたバイオセンサーの合理設計を目指している。
6-5 光分子科学研究領域

光分子科学第二研究部門

大 森 賢 治（教授）（2003年9月1日着任）

素川 靖司（助教）
DE LÉSÉLEUC, Sylvain（助教）
富田 隆文（特別研究員（分子科学研究所特別研究員））
BHARTI, Vineet（特別研究員）
CHAUHAN, Vikas Singh（特別研究員）
周 鳥居 諭来（特別研究員）
藤川 武敏（特別研究員）
川本 美奈子（特別研究員）
鈴井 光一（特別研究員）
牧野 茜（特別研究員）
松尾 友紀子（特別研究員）
MORLA AL YAHYA, Joa（インターンシップ）
DENECKER, Tom（インターンシップ）
KOCIK, Robin（インターンシップ）
BARRE, Maxence（インターンシップ）
MARTHOURET, Hugo（インターンシップ）
DELABRE, Antoine（インターンシップ）
北出 聡太（インターンシップ）
毎岡 雅人（インターンシップ）
MAURICIO URBINA, Jorge Antonio（インターンシップ）
TIRUMALASETTY PANDURANGA, Mahesh（大学院生）
VILLELA ESCALANTE, Rene Alejandro（大学院生）
田中 亮（技術支援員）
中井 愛里（技術支援員）
西岡 稚子（事務支援員）

A-1) 専門領域：量子物理学、原子分子光物理学、量子情報科学、物理化学

A-2) 研究課題：
a) アト秒精度のコヒーレント制御法の開発
b) 量子論の検証実験
c) コヒーレント分子メモリーの開発
d) 分子ベースの量子情報科学
e) 強レーザー場非線形過程の制御
f) バルク固体の極限コヒーレント制御
g) 超高速量子シミュレータの開発

研究活動の現状
研究活動の現状 175

h) 超高速量子コンピュータの開発

A-3) 研究活動の概略と主な成果

a) コヒーレント制御は、物質の波動関数の位相を操作する技術である。その応用は、量子コンピューティングや結合選択的な化学反応制御といった新たなテクノロジーの開発に密接に結びついている。コヒーレント制御を実現するための有望な戦略の一つとして、物質の波動関数に波としての光の位相を転写する方法が考えられる。例えば、二原子分子に核の振動周期よりも短い光パルスを照射すると、「振動波束」と呼ばれる局在波が結合軸上を行ったり来たりするような状態を造り出すことができる。波束の発生に際して、数フムト秒からアト秒のサイクルで振動する光電場の位相を波束構成する各々の振動固有状態の量子位相として分子内に保存されるので、光学サイクルを凌駕する精度で光の位相を操作すれば波束の量子位相を操作することができる。我々はこの考えに基づき、独自に開発したアト秒位相変調器（APM）を用いて、二つのフムト秒レーザーパルス間の相対位相をアト秒精度で操作するとともに、このパルス対によって分子内に発生した二つの波束の相対位相を同様の精度で操作する事に成功した。さらに、これらの高度に制御された波束干渉の様子を、ピコメートルレベルの空間分解能とフェムト秒レベルの時間分解能で観測する事に成功した。

b) APMを用いて、分子内の2個の波束の量子干涉を自在に制御する事に成功した。また、この高精度量子干涉をデコヒーレンス検出器として用いる事によって、熱的な分子集団や固体中の電子的なデコヒーレンスを実験的に検証した。さらに、固体パラ水素中の非局在化した量子状態（vibron）の干渉を観測し制御する事に成功した。

c) 光子場の振幅情報を分子の振動固有状態の量子振幅として転写する量子メモリの開発を行なった。ここでは、フェムト秒光パルス対によって分子内で生成した2個の波束間の量子位相差をアト秒精度で操作し、これらの干涉の結果生成した第3の波束を構成する各振動固有状態のポピュレーションを観測することによって、光子場の干渉情報が高い精度で分子内に転写されていることを証明することができた。また、フェムト秒光パルス対の時間間隔をアト秒精度で変化させることによって波束内の固有状態のポピュレーションの比率を操作できることを実証した。さらに、固体パラ水素中の振動量子状態（vibron）の位相情報の2次元分布を操作し可視化することによって、固体2次元メモリの可能性を実証することに成功した。

d) 分子メモリーを量子コンピュータに発展させるためには、c)で行ったポピュレーション測定だけでなく、位相の測定をも行う必要がある。そこで我々は、c)の第3の波束の時間発展を別のフェムト秒パルスを用いて実時間観測した。これによって、ポピュレーション情報と位相情報の両方を分子に書き込んで保存し、読み出すことが可能であることを見証した。振動固有状態の組を量子ビットとして用いる量子コンピュータの可能性が示された。さらに、分子波束を用いた量子フーリエ変換を開発した。

e) 分子の振動波束を構成する振動固有状態の振幅と位相を強レーザーで制御することに成功した。

f) バルク固体中の原子の超高速2次元運動をフェムト秒単位で制御し画像化する新しい光技術を開発した。

g) ほぼ絶対零度（-50ナノケルビン）まで冷やした極低温のルビジウム原子をミクロレベルで整列させた人工原子結晶にアト秒精度のコヒーレント制御法を適用することによって、3万個の粒子の量子多体問題を近似無しに1ナノ秒（ナノ＝10⁻⁹）以内でシュミュレートできる世界唯一・最速の「超高速量子シュミュレータ」を開発することに成功した。それぞれ異なる研究分野で発展してきた「超高速化学」と「極低温物理」の手法を融合させた世界初の試みであり、材料科学・固体物理・溶液化学など広範囲の領域に波及効果を及ぼす新しい方法論として期待されている。

h) 上記の人工原子結晶とアト秒精度のコヒーレント制御法を組み合わせた世界唯一・最速の「超高速量子コンピュータ」の開発を進めている。
B-1) 学術論文

B-4) 招待講演

大森賢治, 「量子力学に残された100年の謎に迫る」, LG Japan Lab (株)横浜R&D Center 開所式・記念講演, 横浜, 2022年7月.
大森賢治, 「量子力学に残された100年の謎に迫る」, 令和4年度(2022年度)第122回 熊本県立熊本高等学校 創立記念講演会, 熊本, 2022年10月.
大森賢治, 「ロックミュージシャンだった物理学者」, Kumamoto Education Week 2023——みんなの夢が未来を創る——オープニングトーク, 熊本, 2023年1月.
大森賢治, 「量子スピード限界で動作する冷却原子型・超高速量子コンピュータ」, KEK（高エネルギー加速器機構）素核研・物構研 連携研究会, 高エネルギー加速器機構, 筑波 (オンライン開催), 2023年2月.
大森賢治, 「量子力学100年の謎に残された物理学者」, 文部科学省GIGAスクール特別講座, 岡崎コンファレンスセンター, 岡崎, 2023年3月.
大森賢治, 「量子スピード限界で動作する冷却原子型・超高速量子コンピュータ」, 第70回応用物理学会春季学術講演会, 上智大学, 東京, 2023年3月.
大森賢治, 「量子スピード限界で動作する冷却原子型・超高速量子コンピュータ」, 自然科学研究機構 経営協議会・教育研究評議会, 御茶ノ水ソラシティカンファレンスセンター, 東京, 2023年3月.
大森賢治, 「大規模・高コヒーレンスな動的原子アレー型・誤り耐性量子コンピュータ」, ムーンショット目標6公開シンポジウム2023・プロジェクト紹介講演, ベルサール秋葉原, 東京, 2023年3月.

K. OHMORI, “Ultrafast quantum computer/simulator with attosecond precision,” The 4th International Symposium on Quantum Physics and Quantum Information Sciences, 北京量子信息科学研究院 (Beijing Academy of Quantum Information Sciences), Beijing (China) (Online), November 2022.

B-5) 特許出願
特許登録（米国）US11567450,「量子シミュレーターおよび量子シミュレーション方法（Quantum Simulator and Quantum Simulation Method）」, 酒井寛人 (浜松ホトニクス), 大森賢治 (自然科学研究機構), 武井宣幸 (自然科学研究機構), 豊田晴義, 大竹良幸, 兵士知子, 濱口優 (浜松ホトニクス) (登録日 2023年1月31日).
特願 2020-145826, 「量子シミュレーターおよび量子シミュレーション方法」, 酒井寛人 (浜松ホトニクス), 大森賢治 (自然科学研究機構), 安藤太郎 (浜松ホトニクス), シルヴァンドレゼルック, 富田隆文, 素川靖司 (自然科学研究機構), 大竹良幸, 豊田晴義 (浜松ホトニクス), 2020年.
特願 2020-145812, 「量子シミュレーターおよび量子シミュレーション方法」, 酒井寛人 (浜松ホトニクス), 大森賢治 (自然科学研究機構), 安藤太郎 (浜松ホトニクス), シルヴァンドレゼルック, 富田隆文, 素川靖司 (自然科学研究機構), 大竹良幸, 豊田晴義 (浜松ホトニクス), 2020年.
WO2022045146 (PCT), 「量子シミュレーターおよび量子シミュレーション方法」, 酒井寛人 (浜松ホトニクス), 大森賢治 (自然科学研究機構), 安藤太郎 (浜松ホトニクス), シルヴァンドレゼルック, 富田隆文, 素川靖司 (自然科学研究機構), 大竹良幸, 豊田晴義 (浜松ホトニクス), 2020年.
WO2022045147 (A1) (PCT), 「量子シミュレーターおよび量子シミュレーション方法」, 酒井寛人 (浜松ホトニクス), 大森賢治 (自然科学研究機構), 安藤太郎 (浜松ホトニクス), シルヴァンドレゼルック, 富田隆文, 素川靖司 (自然科学研究機構), 大竹良幸, 豊田晴義 (浜松ホトニクス), 2020年.

B-6) 受賞, 表彰
周 鳥居 諭来, 第9回 SOKENDAI 賞 (2022).

B-7) 学会および社会的活動
学会会員等
European Science Foundation (ESF), ESF College of Expert Reviewers (2018–).
Center for Quantum Engineering, Research and Education (CQuERE), TCG, CREST (India), Scientific Advisory Board (2021–).
日本分光学会代議員 (2022–).
学会の組織委員等
原子・分子・光科学 (AMO) 討論会プログラム委員 (2003–).
研究活動の現状

米国ゴールドン研究会議（Gordon Research Conferences: GRC, USA）評議会メンバー (2019–)。

文部科学省、学術振興会、大学共同利用機関等の委員等
- 文部科学省 科学技術・学術審議会 専門委員 (2015–)。
- 文部科学省 科学技術・学術審議会 量子科学技術委員会 議長代理 (2015–2023)、議長 (2023–)。
- 文部科学省 研究計画・評価分科会 臨時委員 (2023–)。

科学技術振興機構 戦略的創造研究推進事業（CREST）研究領域「量子状態の高度な制御に基づく革新的量子技術基盤の創出」（研究総括：荒川泰彦）中間評価委員 (2020–)。

学会誌編集委員
- Journal of Physics B: Atomic, Molecular and Optical Physics, IOP, UK, Section Editor for Quantum Technologies (2019–) and Executive Editorial Board (2021–)。

競争的資金等の領域長等
- 内閣府「ムーンショット型研究開発制度」、「大規模・高コヒーレンスな動的原子アレー型・誤り耐性量子コンピュータ」プロジェクト・マネージャー（PM） (2022–)。
- 文部科学省「光・量子飛躍プラグシッププログラム（Q-LEAP）」量子情報処理・大規模基盤基盤研究、「アト秒ナノメートル領域の時空間光制御に基づく冷却原子量子シミュレータの開発と量子計算への応用」研究代表者 (2018–)。

その他
- 冷却原子型・量子コンピュータ開発において従来技術を2桁上回る世界最速の制御量子ゲート（量子コンピューティングに不可欠な条件つき2量子ビットゲート）を達成し、Nature Photonics 2022年10月号の表紙を飾るとともに、日米欧中を中心に世界中の200件以上のニュース報道でハイライトされることによって、分子研の世界的なプレゼンス向上と研究力アピールに大きく貢献。
- 上記の世界最速の制御量子ゲート（量子コンピューティングに不可欠な条件つき2量子ビットゲート）の成果を受けて、日本の学会誌を通じて、米国を代表する量子技術開発コンソーシアムであるChicago Quantum Exchange（CQE）、シカゴ大学、マサチューセッツ工科大学（MIT）、ハーバード大学などの米国の量子技術開発の最重要拠点の数々や、ドイツのフンボルト財団、原子物理分野で由緒ある大規模な国際会議（今年の開催地：オタワ）などから、次々にコロキウムや全体講演（Plenary Lecture）等に招待され、世界的アカデミアで大反響を呼んでおり、分子研の世界的なプレゼンス向上と研究力アピールに大きく貢献。
- 上記の世界最速の制御量子ゲート（量子コンピューティングに不可欠な条件つき2量子ビットゲート）の成果を受けて、日本光学学会誌「光学」において「2022年の日本の光学研究を代表する成果」として解説記事を依頼されている他、「日本物理学会誌」「応用物理学会誌」「応用物理」「自動車技術会誌」「自動車技術」などからも、次々に解説記事を依頼されるなど、光学、物理学、自動車技術など様々な研究分野に強烈なインパクトを与え、分子研の全国的なプレゼンス向上と研究力アピールに大きく貢献。
文部科学省の指名を受けて、量子科学技術をテーマにした文部科学省GIGAスクール特別講座「量子力学100年の謎と量子コンピュータへの挑戦」の企画と講師を務めることによって、分子研を「日本における量子科学技術の中心拠点」として広く社会に認知させるとともに、わが国の量子科学技術の将来を担う若い世代の人材育成に大きく貢献。

日本の量子技術政策の象徴である「文部科学省Q-LEAPプロジェクト」の前半（2018–2022年度）のステージゲート審査（2022年5月12日）において最高評価「S:評価項目を満たしており、特に優れたところが認められる」を獲得し（2022年6月24日に結果通知）、分子研の全国的なプレゼンス向上と研究力アピールに大きく貢献。

文部科学省 科学技術・学術審議会 量子科学技術委員会の主査代理 専門委員（2015–2023）、同委員会の主査（2023–現在）、ならびに文部科学省 研究計画・評価分科会 臨時委員（2023–現在）として、量子テクノロジー開発および分子研UVSORを含む量子ビーム（放射光施設・大型レーザー施設）利用推進に関する政策検討に大きく貢献。

世界最高レベルの学術会議である米国ゴードン研究会議（Gordon Research Conferences: GRC, USA）の評議会メンバー（2019–）としてGRCの運営に貢献することによって、科学技術分野全般における分子研の国際的なプレゼンス向上と研究力アピールに大きく貢献。

量子科学技術分野における世界最高レベルの学術会議である米国ゴードン研究会議（Gordon Research Conference: GRC, USA）“Quantum Control of Light and Matter”の2023年会議 議長、2021年会議 議長（Covid-19パンデミックのため2023年に延期）、および2019年会議 副議長として2017年から2023年の長期に渡り、GRCの運営に貢献することによって、量子科学技術分野における分子研の国際的なプレゼンス向上と研究力アピールに大きく貢献。

米国を代表する量子テクノロジー企業からの強い要望で、分子研・大森グループとの今後の協業に向けた協議を継続的に進めることによって、米国の産業界における分子研のプレゼンス向上と研究力アピールに大きく貢献。

文部科学省と、わが国の量子科学技術政策に関する意見交換・ブレインストーミングを継続的に行うことによって日本政府の政策立案、および日本政府に対する分子研のプレゼンス向上と研究力アピールに大きく貢献。

科学技術振興機構（JST）に対して国内外の研究助成やJSTが推進すべき研究領域などについてアドバイスを行うことによってわが国の量子科学技術の発展と分子研のプレゼンス向上に貢献。

文部科学省研究振興局大学研究基盤整備課のメンバーに対して、大森グループの超高速量子シミュレータ・量子コンピュータラボの研究開発状況に関するレクチャーおよびラボツアー（2023年3月30日）を行うことによって、日本政府に対する分子研のプレゼンス向上と研究力アピールに大きく貢献。

B-8) 大学等での講義、客員

Heidelberg University（ドイツ）、客員教授（フンボルト賞受賞者）、2012年–。

総合研究大学院大学物理科学研究科、集中講義「量子動力学」、2022年12月13日、15日、20日、22日。

B-9) 学位授与

周 鳥居 諭来、『光ピンセット配列中の冷却リュードベリ原子を用いた超高速量子ダイナミクスの研究』、2022年9月、博士（理学）。

研究活動の現状 179
B-10) 競争的資金
内閣府「ムーンショット型研究開発制度」、「大規模・高コーホーレンスな動的原子アレ－型・誤り耐性量子コンピュータ」、
大森賢治 (2022年度–2030年度)。
文部科学省「光・原子飛躍フラッグシッププログラム (Q-LEAP)」量子情報処理・大規模基礎基盤研究、「アト秒ナノメー
トル領域の時空間光制御に基づく冷却原子量子シュミレータの開発と量子計算への応用」、大森賢治 (2018年度–2028年
度)。
内閣府官民研究開発投資拡大プログラム (PRSIM)、「超高速・高機能な冷却原子型量子シュミレータ・コンピュータ
の高度化」、大森賢治 (2021年度–2022年度)。
科研費基盤研究 (B)、「強相関リュードベリ原子を用いた非平衡量子開放系の量子シュミレーション」、素川靖司 (2021
年度–2025年度)。
科研費研究活動スタート支援、「Rydberg atoms at sub-micron distance with overlapping electronic clouds」、Sylvain de
LÉSÉLEUC (2019年度–2022年度)。
科研費研究活動スタート支援、「冷却原子の個別観測と事後選択的統計処理に基づく開放量子多体系の研究」、富田隆文
(2019年度–2022年度)。

B-11) 産学連携
浜松ホトニクス (株)、「超高速量子シュミレータの開発」、大森賢治 (2016年–)。
(株) 日立製作所、「超高速量子コンピュータの開発」、大森賢治 (2022年–)。
ColdQuanta, Inc. (米国)、「超高速量子コンピュータの開発」、大森賢治 (2022年–)。

C) 研究活動の課題と展望
今後我々の研究グループでは、APM を高感度のデコヒーレンス検出器として量子論の基礎的な検証に用いると共に、
より自由度の高い量子位相操作技術への発展を試みる。そしてそれらを希薄な原子分子集団や凝縮相に適用すること
によって、「アト秒量子エンジニアリング」と呼ばれる新しい領域の開拓を目指している。当面は以下の 5 テーマの
実現に向けて研究を進めている。
① デコヒーレンスの検証と抑制：デコヒーレンスは、物質の波としての性質が失われて行く過程である。量子論におけ
る観測問題と関連しうる基礎的に重要なテーマであるとともに、テクノロジーの観点からは、反応制御や量子情報処
理のエラーを引き起こす主要な要因である。その本質に迫り、制御法を探索する。
② 量子散逸系でのコードレント制御の実現：①で得られる知見をもとにデコヒーレンスの激しい凝縮系でのコードレン
ト制御法を探索する。
③ 原子・分子ベースの量子情報科学の開拓：アト秒精度の超高速コードレント制御技術によって、原子・分子内の電子・
振動固有状態を用いるユニタリ変換とそれにに基づく量子情報処理の確立を目指す。さらに、単一原子・分子の操作・
読み出し技術の開発を進める。
④ 超高速量子シュミレータの開発：ほぼ絶対零度 (~50 ナノケルビン) まで冷やした極低温のルビジウム原子をミクロン
レベルで整列させた人工原子結晶とアト秒精度の超高速コードレント制御技術を組み合わせた世界唯一・最速の「超
高速量子シュミレータ」のさらなる高機能化を目指す。
超高速量子コンピュータの開発：極低温のルビジウム原子をミクロンレベルで整列させた人工原子結晶とアト秒精度の超高速コヒーレント制御技術を組み合わせた世界唯一・最速の「超高速量子コンピュータ」の開発を進める。これらの研究の途上で量子論を深く理解するための何らかのヒントが得られるかもしれない。その理解はテクノロジーの発展を促すだろう。我々が考えている「アト秒量子エンジニアリング」とは，量子論の検証とそのテクノロジー応用の両方を含む概念である。
光分子科学第三研究部門

解 良 聡（教授）（2014年4月1日着任）

福谷 圭祐（助教）
SCHAAL, Maximilian（インターンシップ）
西野 史（大学院生）
PALASSERY ITHIKKAL, Jaseela（大学院生）
山内 早希（特別共同利用研究員）
瀬間 亮太（特別共同利用研究員）
神谷 美穂（事務支援員）

A-1) 専門領域：表面物理学，有機薄膜物性

A-2) 研究課題：
a) シンクロトロン放射光・レーザー光励起による弱相互作用系の電子状態計測
b) 配向分子薄膜の光電子放出強度の理論解析と分子軌道撮影法の開発
c) 有機半導体薄膜の電荷輸送機構の研究
d) 有機半導体薄膜の界面電子準位接合機構の研究
e) 機能性分子薄膜の振動状態と電子励起計測
f) 自己組織化と分子認識機能の分光研究
g) 分子薄膜の作製と評価：成長ダイナミクス，構造と分子配向
h) 低次元電子相関物質の物性機構解明

A-3) 研究活動の概要と主な成果
a) 機能性分子薄膜の弱相互作用による電子状態変化を計測する技術開発を進めている。弱相互作用を定量的に評価するため，蒸気圧の低い大型分子対応の気相光電子分光実験装置を開発し，分子集合による電子状態の違いに関する議論を進めている。超短パルスレーザー光を励起源とする二光子光電子分光装置を構築し，ホール緩和や勧起子拡散など，電荷ダイナミクス関連の研究を進めている。UVSORではBL7Uにおける低エネルギー勧起光を用いた角度分解光電子分光（ARPES）による分子界面電子状態の計測法開拓を推進しつつ，BL6Uにおける光電子運動量顕微鏡（PMM）の装置開発と分子系への最適化のためのパラメータ調整を進めている。
b) 高配向分子薄膜からの光電子放出強度の角度依存性について，多重散乱理論による強度解析を行い，有機分子薄膜構造の定量的解析を行うための方法頃を検討してきた。その後，高配向試料では広波数空間二次元分解測定が分子軌道の可視化に対応することが指摘され，新たな量子計測ツールになりうると期待されている。前述の放射光を利用したPMM装置による高効率計測が可能である。特に単層膜界面の分子配向に依存した電子波のポテンシャル散乱と干涉問題を定量化し，局在電子系における一電子近似の限界を吟味しつつ，弱相互作用系の物理現象を議論するための新たな方法論の構築を目指している。
c) 有機半導体のバンド分散関係：良質な配向有機結晶薄膜を作製し，価電子エネルギー-バンド分散を測定する技術を確立した。分子間相互作用の大きさ，ホール有効質量，バンド伝導移動度の定量的評価と，分子結晶特有の物理モデ
ルの構築を進めている。多体効果による電子構造への影響を検出し、非自明な機能開拓へ向けた研究を進めている。
有機半導体結晶における振動相互作用の運動量異方性の検出に成功した。
有機半導体の電荷振動結合：配向有機超薄膜の作製により、非自明な機能開拓へ向けた研究を進めている。
ホッピング移動度（そのポーラロン効果を含む）を分光学的得る方法を開拓した。これらの物理量を実測すること
で、準粒子論に基づく輸送機構の解明を目指している。

d) 本質的には絶縁物である有機分子が n 型/ p 型半導体として機能する起源を明らかにすべく研究を進めている。
極めて効率よく高感度にして紫外電子放射顕微鏡（PEEM）、走査プローブ顕微鏡（STM）、高分解能スポット解析型低速電子線回折（SPALEED）、準安定励起原子電子分光（MAES）、X 線吸収分光（NEXAFS）等を用い、基板界面における单分子膜成長から結晶膜成長までの多様な集合状態について構造（分子配向）と成長を観察している。

B-1) 学術論文

B-4) 招待講演

福谷圭祐, 「Ta2NiSe 5 の励起子絶縁体の根拠としての自発的励起子からの光電子観測」, 日本物理学会第 77 回年次大会, オンライン開催, 2022 年 3 月.

B-7) 学会および社会的活動

学会協会役員等

VUVX（International Conference on Vacuum Ultraviolet and X-Ray Physics）真空紫外光物理およびX線物理国際会議国際諮問委員 (2014–).

SRI（International Conference on Synchrotron Radiation Instrumentation）シンクロトロン放射装置技術国際会議国際諮問委員 (2018–).

AOF（Asia Oceania Forum for Synchrotron Radiation Research）アジア・オセアニア放射光研究評議会庶務委員 (2021–).

学会の組織委員等

文部科学省, 学術振興会, 大学共同利用機関等の委員等

東京大学物性研究所軌道放射物性研究施設運営委員会委員 (2018–).

SPring-8ユーザー協同体(SPRUC)機関代表者 (2019–).

KEK 加速器・共通基盤研究施設運営会議委員 (2021–2024).

KEK 物質構造科学研究所運営会議委員 (2021–2024).

東京大学物性研究所附属極限コヒーレント光科学研究センター軌道放射物性研究施設運営委員会委員 (2022–2024).

学会誌編集委員

B-8) 大学等での講義、客員
東北大学大学院理学研究科、委嘱教授、「強相関電子物理学概要」，2020年–.
千葉大学大学院融合科学研究科、連携客員教授，2014年9月–.
千葉大学大学院融合科学研究科、「ナノ創造性工学概論II」，2014年9月–.
蘇州大学、客員教授，2014年4月–.

B-10) 競争的資金
科研費国際共同研究加速基金（国際共同研究強化（B））、「光電子波数顕微鏡法で切り拓くナノスピン・オービトロニクス」，解良聡（2019年度–2022年度）。
科研費研究活動スタート支援，「励起子絶縁体における自発的励起子生成メカニズムの解明」，福谷圭祐（2021年度–2022年度）。
科研費基盤研究（C），「基底状態観測と物質設計に基づく定常励起子の制御」，福谷圭祐（2022年度–2024年度）。

C) 研究活動の課題と展望
機能性分子の高配向試料作製法と精密電子状態計測で蓄積したノウハウを結集し、分子集合体における「電子の姿を見出すること」でその機能・物性の根源を理解することを主眼とし、様々な放射光利用先端拡張法や独自に開発した分光装置群を駆使して多角的に研究を進めている。2021年度より福谷助教が着任し、低次元物性と精密計測に関する研究力を強化した。分子結晶や界面の階層性に着目し、電子物性の多体効果問題に挑戦する。一方、UVSOR施設長として国内コミュニティの基盤強化を推進するための利用支援に注力している。2019年度から技術開発を進めているPMM装置について、スピン検出機能追加による第二期R&Dを開始した。松井教授らと共に多彩な計測機能をもつ複合システムの完成を目指す。ドイツの装置開発拠点であるユーリッヒ研究所との学術協定によって、装置開発とその利用展開についての国際共同研究を推進するとともに、国内では分子細胞体のオールジャパン体制（実験室、理論室）を構築し、戦略的に上記装置を利用した新奇実験を牽引する。施設長期計画として次世代研究施設UVSOR-IVの建設に向けた準備を進めている。学術系施設PF、HiSORとの連携に加え、あいちSRとナノテラスを中心に、国内外施設およびコミュニティの意見交換と情報収集に邁進している。
研究活動の現状

長坂将成（助教）（2007年4月1日着任）

石川裕子（事務支援員）
神谷美穂（事務支援員）

A-1) 専門領域：物理化学，軟X線分光学

A-2) 研究課題：
a) 軟X線吸収分光法による溶液の局所構造解析
b) 軟X線吸収分光法による金属錯体溶液の局所構造解析
c) 溶液の軟X線吸収分光法の低エネルギー領域への開拓
d) 溶液光化学反応のオペランド時間分解軟X線吸収分光法の開発

A-3) 研究活動の概略と主な成果
a) 2 keV 以下の軟X線領域には炭素，窒素，酸素の K 吸収端や遷移金属の L 吸収端が存在するため，軟X線吸収分光（XAS）法は溶液の局所構造を元素選択的に調べることができる有用な手法である。我々は液体層の精密厚さ制御法（20 ~ 2000 nm）を独自に開発することで，溶液の XAS 測定を実現した。更に，XAS スペクトルのエネルギーシフトの高精度測定と量子化学に基づく内殻励起計算から，異なる元素ごとに溶液中の分子間相互作用を調べる手法を確立した。最近では，ジメチルホキシド水溶液の O-K 吸収端 XAS 測定を行うことで，異なる濃度におけるジメチルホキシドと水の間の水素結合ネットワークの変化を明らかにした。また，液体エタノールの C-K 吸収端 XAS スペクトルを分子動力学計算と内殻励起計算の組み合わせから再現する方法を確立した。
b) 水溶液中のヘミン（FePPIX）とその異種金属錯体（CoPPIX）の N-K 吸収端 XAS 測定を行い，金属錯体の中心金属依存性を調べた。N-K 吸収端では金属錯体の配位子の電子状態を観測するが，配位子の 2p 軌道と中心金属の 3d 軌道の混成のため，その金属-配位子間相互作用を調べることに成功した。更に，金属錯体のスピン状態や水溶液中の溶媒の配位効果などを，N-K 吸収端 XAS 測定から調べられることを実証した。
c) 200 eV 以下の低エネルギー領域には，Li，B の K 吸収端や Si，P，S，Cl の L 吸収端が存在するため，化学研究において重要である。しかしながら，低エネルギー領域では，目的の一次回折光の透過率が極端に小さくて，一次回折光の強度変化が高次回折光の寄与に埋もれてしまうため，XAS 測定は不可能であった。そこで，Si が含まれていない高分子ナノ膜を開発すると共に，液体セルを満たすアルゴン光路長を 2.6 mm でできる超薄型液体セルを開発することで，低エネルギー領域の溶液の XAS 測定の実現を目指している。
d) 溶液光化学反応のオペランド時間分解 XAS 測定を実現するために，超高速レーザーパルスと放射光から発生する軟X線パルスを 70 ps の時間分解能で同期するシステムを構築した。これにより，鉄フェナントロリン錯体水溶液の N-K 吸収端 XAS スペクトルにおいて，光励起後の高スピン状態から低スピン状態に緩和する過程の経時変化を，金属錯体の配位子の電子状態変化から観測することに成功した。
B-1）学術論文

B-4）招待講演
長坂将成,「軟X線吸収分光法による溶液の化学現象の解明」, 第130回触媒討論会, 富山市, 2022年9月.
長坂将成,「軟X線吸収分光法による溶液反応のオペランド観測」, 第12回岩澤コンファレンス「サステナブル社会のための触媒化学・表面科学の最前線」, 東京, 2023年3月.

B-7）学会および社会的活動
学会の組織委員等
理科教育活動
出前授業「分子研摂業～授業の先に何があるのか～「軟X線で観る液体の化学」」愛知県立岡崎北高等学校あいちSTEMハイスクール研究指定事業 (2022).

B-8）大学等での講義 客員
理化学研究所, 客員研究員, 2022年4月–2023年3月.
B-10) 競争的資金

科研費基盤研究(B),「励起キャリア移動の指向性制御による高効率光触媒表面の構築」 (代表：吉田真明), 長坂将成 (研究分担者) (2021年度~2023年度)。
科研費基盤研究(A),「人工光合成をめざす半導体光触媒:オペランド計画によるミリ秒反応化学の解明」 (代表：大西洋), 長坂将成 (研究分担者) (2022年度~2024年度)。
科研費基盤研究(B),「難分解性有機物資源化を可能にするグラファイト担持型超強力酸化触媒活性種の開発」 (代表：山田泰之), 長坂将成 (研究分担者) (2022年度~2024年度)。
光源加速器開発研究部門（極端紫外光研究施設）

加藤政博（特任教授）（2019年4月1日着任）
（クロスアポイントメント：広島大学放射光科学センター）

藤本将輝（助教）（兼任）
石原麻由美（事務支援員）
加茂恭子（事務支援員）

A-1) 専門領域：ビーム物理学、加速器科学、放射光科学

A-2) 研究課題：
 a) シンクロトロン光源の研究
 b) 自由電子レーザーの研究
 c) 相対論的電子ビームからの電磁放射の研究
 d) 量子ビームの発生と応用に関する研究

A-3) 研究活動の概略と主な成果
 a) シンクロトロン光源UVSORの性能向上に向けた開発研究を継続している。電子ビーム光学系の最適化による電子ビーム輝度の大幅な向上、電子ビーム強度を一定に保つトップアップ入射の導入などに成功し、低エネルギー放射光源としては世界最高水準の光源性能を実現した。収束放射光発生のために真空封止アンジュレータ3台、可変偏光型アンジュレータ3台を設計・建設し、稼働させた。UVSORの将来計画に関する設計研究に着手し、既存加速器の更なる高度化の可能性を検討した後、新しい光源加速器の設計を開始し、これまでに電子エネルギー1 GeV、周長約70 mの放射光源の基礎設計を完了した。
 b) 自由電子レーザーや関連技術に関する研究を継続している。蓄積リング自由電子レーザーとして世界最高の出力を記録した。また、共振器型自由電子レーザーに関する基礎研究を進め、レーザー発振のダイナミクスやフィードバック制御に関する先駆的な成果を上げた。外部レーザーを用いて電子パルス上に微細な密度構造を形成することでコヒーレント放射光を極端なエネルギーからテラヘルツ領域において生成する研究を継続している。この手法により一様強度中から単色テラヘルツ放射光を発生させることに世界に先駆けて成功した。電子パルス上に形成された密度構造の時間発展に関するビームダイナミクス研究により先駆けた成果を上げた。
 c) 高エネルギー電子ビームによる光渦の生成に成功し、その原理の解明に世界に先駆けて成功した。自然界での光渦の生成の可能性について、研究を進めると共に、深紫外・真紫外領域での物質系と光渦の相互作用に関する基礎研究を進めている。
 d) 外部レーザーと高エネルギー電子線を用いた逆コンプトン散乱によるエネルギー可変、偏光可変の極短ガンマ線パルス発生に関する研究を継続している。パルス幅数ピコ秒以下の超短ガンマ線パルスの生成、エネルギー可変性の実証に成功した。光陰極を用いた電子源の開発を進め、現在、超極短ガンマ線の応用研究の開拓を進めている。
 e) アンジュレータ放射光波束の時間構造に着目した研究に原子分子物理学研究者と共同で取り組み、2速のアンジュレータからの自然放射を用いた孤立原子の量子状態制御に世界で初めて成功した。放射光の時間構造や干涉性の実験的検証を進め、全く新しい放射光利用法の開拓を進めている。
研究活動の現状

B-1) 学術論文

B-4) 招待講演

B-7) 学会および社会的活動

学協会役員等
　日本加速器学会評議員 (2020–).
　日本放射光学会評議員 (2022–).

文部科学省, 学術振興会, 大学共同利用機関等の委員等
　高エネルギー加速器研究機構教育研究評議会評議員 (2021–).
　高エネルギー加速器研究機構加速器研究施設運営委員 (2018–).

その他
　あいちシンクロトロン光センター運営委員 (2013–).

B-8) 大学等での講義, 客員

名古屋大学シンクロトロン光研究センター, 客員教授, 2018年4月–.
　高エネルギー加速器研究機構加速器研究施設, 客員教授, 2018年4月–.
　核融合科学研究所, 客員教授, 2022年4月–.
B-10) 競争的資金
科研費基盤研究 (A)，『放射光の位相構造制御法の開発』、加藤政博（2020年度–2022年度）。

C) 研究活動の課題と展望
UVSORは2000年以降の継続的な高度化により、低エネルギーのシンクロトロン光源としては世界的にも最高レベルの性能に到達したが、国内外では新しい光源の建設競争が相次ぎ、更なる競争力の向上が求められている。現在の加速器の更なる高度化の可能性を検討した結果、現在の性能を大幅に上回る高度化改修は困難であると結論づけ、新基準に回折限界を目指す光源加速器の建設について検討を進めている。基礎設計は概ね完了し、今後、デザインレポートの作成を進める。また、高エネルギー加速器研究機構や名古屋大学シンクロトロン光研究センターなどと連携し、持続可能な加速器施設を目指した省エネルギー化や運転の自動化などを念頭に、次期光源に必要とされるハードウェア技術開発を進める。

高エネルギー自由電子を用いた光発生として、自由電子レーザーやレーザーコンプトン散乱ガンマ線、コヒーレントシンクロトロン放射の発生法の開発や高度化、それらの利用法の開拓に取り組んできた。最近では光子の時空間構造やその干渉性の実験的検証やその利用法の開拓に挑戦している。放射光による光渦の生成、さらに放射光光渦同士の合成によるベクトルビーム発生など、UVSORの研究環境を活用して世界に先駆けた研究ができた。また、二連アンジュレータから放射される光子の時間構造を利用した量子状態制御について先駆的な成果が示されている。相対論的自由電子から電磁放射の時空間構造の制御とその応用というこれまで全く着目されていなかった領域を切り拓きつつあり、今後はさらに基礎研究を進めるとともに幅広く応用展開の可能性を探っていくたい。
電子ビーム制御研究部門（極端紫外光研究施設）

平義隆（准教授）（2020年4月1日着任）

杉田健人（助教）
SALEHII, Elham（特任研究員）
田部圭悟（特別共同利用研究員）
後藤啓太（特別共同利用研究員）
小澤舜介（特別共同利用研究員）
塩原慧介（特別共同利用研究員）
石原麻由美（事務支援員）
加茂恭子（事務支援員）

A-1) 専門領域：ガンマ線計測，陽電子計測，光渦計測

A-2) 研究課題：

a) 超短パルスガンマ線の発生と利用研究
b) 短波長光渦の発生と計測技術開発

A-3) 研究活動の概略と主な成果

a) 世界の放射光施設でもUVSORの独自技術である超短パルスガンマ線を用いた陽電子消滅分光によるバルク材料の原子スケール欠陥分析に関する研究である。超短パルスガンマ線は，フェムト秒レーザーと750MeV電子ビームの90度衝突逆トムソン散乱によって発生し，そのパルス幅はサブピコ秒からピコ秒オーダーである。この超短パルス性とバックグラウンドの低さを活かしたガンマ線の利用研究として，陽電子消滅分光法による材料中の欠陥分析をユーザーに提供している。陽電子は，対生成と呼ばれる現象によって材料内部でガンマ線から発生し，材料中の欠陥に捕獲される。欠陥の大きさによって陽電子の寿命が変化するために，陽電子寿命を測定することで材料中の欠陥を非破壊で分析することができる。さらに，ガンマ線は物質に対する透過率が高いために厚さ数cmのバルク材料の欠陥分析を行うことが可能である。2022年度に陽電子寿命測定法及び寿命運動量相関測定法の検出器の数を2倍にすることで，計数率が2倍になることを確認した。これまでと同じ統計を貯めるのに測定時間が半分になり，限られた時間で測定できる試料の数が増えたため，ユーザーにとって利便性が向上した。寿命運動量相関測定法の開発に関する論文がRev. Sci. Instrum.に掲載され，シンチレータ材料の陽電子消滅分光法に関するユーザー執筆の論文が発表された。また，超短パルス円偏光ガンマ線を用いたスピン偏極陽電子消滅分光法の開発も開始しており，複数の分析技術をユーザーに提供することを目指す。一方で，パルスではない連続ガンマ線を用いたユーザー利用も行い，ユーザー執筆の論文が発表された。陽電子消滅分光法とガンマ線の施設利用及び協力研究と有償利用（民間企業）の全申請件数は，2020年度が8件，2021年度16件，2022年度16件と順調に伸びており，今後の成果発表が期待される。

b) 本研究課題では，らせん波面を形成するエネルギーsub-MeV以上のガンマ線渦を世界に先駆けて開発し，素粒子や原子核，物性研究への応用開拓を行うことを最終目標としている。このガンマ線は，位相構造かららせんであるため，軌道角運動量（Orbital angular momentum: OAM）を運ぶことに大きな特徴がある。ガンマ線渦の発生には，
平らが初めて見出した電子ビームと高強度円偏光レーザーの非線形逆トムソン散乱法を用いる。2019年度から関西光科学研究所において高強度レーザーと150MeVマイクロトロン電子加速器を用いた実験を行っており、光渦の特徴である空間分布が円環になることを測定することを目標としている。また、UVSORにおいても非線形逆トムソン散乱実験を行うため、パルスエネルギー50mJのレーザー装置の立ち上げを現在行っている。2022年11月に非線形逆トムソン散乱実験を行ったが、光渦である高次高調波の確認が出来なかった。今後課題解決に取り組み、再実験する予定である。

B-1) 学術論文

B-4) 招待講演

B-7) 学会および社会的活動

学会の組織委員等

ビーム物理研究会 若手の会幹事 (2020–).

B-8) 大学等での講義、客員

理化学研究所、客員研究員、2018年9月–.
総合研究大学院大学物理科学研究科、客員、2022年7月．
B-10) 競争的資金
科研費基盤研究(B)（一般）、「超短パルスガンマ線を用いた陽電子寿命運動量相関測定法の開発と利用研究の推進」、平義隆（2021年度－2023年度）。
科研費基盤研究(A)、「放射光の位相構造制御法の開発」（代表：加藤政博）、平義隆（研究分担者）（2020年度－2022年度）。

C) 研究活動の課題と展望
陽電子消滅分光法に関しては、陽電子寿命測定法と寿命運動量相関測定法に加えて、同時計数ドップラー拡がり法やスピン偏極陽電子の発生と計測技術開発を行い、分析技術の拡充を図る。計算上はパルス幅数ピコ秒のガンマ線が発生していると考えられるが、超短パルスガンマ線のパルス幅計測手法の開発も行う。光渦に関しては、ガンマ線の波面計測の技術を開発し、らせん波面を形成するガンマ線渦が発生していることを実験的に実証する。
大 東 琢 治 (准教授) (2022年2月1日着任)
（クロスアポイントメント：KEK 物質構造科学研究所）

石原 麻由美（事務支援員）
加茂 恭子（事務支援員）

A-1) 専門領域：X線光学

A-2) 研究課題：

a) 走査型透過軟X線顕微鏡ビームラインの発展
b) 走査型透過軟X線顕微鏡を用いた応用手法の開発

A-3) 研究活動の概略と主な成果

a) STXM用の引っ張り応力印加セルの開発を行なった。
b) STXM用に開発した大気非暴露試料搬送システムを用いて、リュウグウ帰還試料の有機物分析を行った。

B-1) 学術論文

B-4) 招待講演
大東琢治, 「軟X線顕微鏡のこれまでとこれから ナノバブルの化学状態分析への挑戦」, 日本マイクロ・ナノバブル学会第 10回学術総会, 東北大学, 仙台, 2022年12月．
大東琢治, 「A cosmic cradle for water and organic molecules; spectro-microscopic analysis in Hayabusa2 project」, 淡江大学, 台湾, 2023年3月．
T. OHIGASHI, “A cosmic cradle for water and organic molecules; spectro-microscopic analysis in Hayabusa2 project,” Academia Sinica Seminar, Taipei (Taiwan), March 2023.
大東琢治, 「A cosmic cradle for water and organic molecules; spectro-microscopic analysis in Hayabusa2 project」, NSRRC (台湾), 2023年3月．

B-7) 学会および社会的活動
学会の組織委員等
第27回日本放射光学会年会シンポジウム組織委員会, 座長 (2022–2023).
SpectroNanoscopy Workshop, Organizing Committee (2014–).
理科教育活動
日本天文教育普及研究会講演「宇宙のゆりかご, 地球へ～はやぶさ2帰還試料の有機物分析」慶應大学日吉キャンパス (2022).
B-8) 大学等での講義，客員
立命館大学 SR センター，特別研究員，2011年8月－．

B-11) 産学連携
共同研究，（株）住友ゴム工業，「走査型透過X線顕微鏡を用いたポリマー中のフィラー周辺の化学状態解析」，大東琢治（2017年度-2022年度）．

C) 研究活動の課題と展望
タイヤゴムにおいて，その破断や損傷の主な原因の一つが，その形状変形の際に内部にかかる応力である．その化学的メカニズムおよび形状の変化の観察を行うため，in-situで試料に引っ張り応力を印加するための，STXM用の試料セルのテスト機の開発を行なった．現在，問題点を改善すべく改良中であり，今後のビームタイムにて実際に運用し，分析研究を進める予定である．惑星探査機はやぶさ2が小惑星リュウグウから持ち帰った試料について，STXMを用いて高分解能有機物分析を行なってきた．リュウグウ試料にはX線照して非常に弱い有機物が含まれており，特に有機物に対する観察時の試料ダメージの小さいとされているSTXMでも，その化学変化が確認されたため，その変化の過程の解明を行なってきた．この試料は2023年4月をもってJAXAに返還しており，現在は研究成果を論文として執筆中である．
光物性測定器開発研究部門（極端紫外光研究施設）

松 井 文 彦（主任研究員）(2018 年 4 月 1 日～2021 年 11 月 15 日)
（教授）(2021 年11月16日昇任)

萩原 健太（特任研究員 (IMS フェロー)）
松田 博之（特任研究員）
石原 麻由美（事務支援員)
加茂 恭子（事務支援員)

A-1) 専門領域：表面物性物理学，電子分光計測技術，放射光科学

A-2) 研究課題：
 a) 運動量分解光電子分光に関する新規現象を基盤とした測定手法確立
 b) 新奇表面電子物性・化学特性・スピン科学の応用展開

A-3) 研究活動の概略と主な成果
 a) ① UVSOR オリジナルの Momentum Microscope（MM）拠点構築を主務とする。MM は空間・波数空間・エネルギーの幅広い範囲での高分解能測定を可能にするユニークな分析器である。電子物性研究に適した VUV/EUV 領域での高強度・可偏光などといった UVSOR の光源特性を活かした測定機能を実装する MM の導入を実現し，論文・プレスリリースを通じて成果発信を続けている。②並行して全天球エネルギー・スピン分析器を考案し特許出願した。上記の MM は 3 Å までの波数空間の一括測定ができるため価電子帯研究で有効な運動エネルギー 36 eV 以下の領域では全天球をカバーすることができるが，原子配列を研究するのに有効な運動エネルギー 500 eV 以上の領域ではせいぜい 15° の領域でしかない。新規分析器は 2 keV でも全天球の放出光電子を取り込むことができ，後段のスピン偏向器でスピンの 3 次元ベクトル解析ができるようになる。①は high-end 型価電子帯光電子分光装置，②は内殻光電子ホログラフィー測定装置である。両者を融合させ，スピン 3 次元ベクトル解析を実・逆空間で自在にマッピングできる唯一無二の装置を構築する。
 b) 物性評価に適した光波長帯の連続的なエネルギー可変性が UVSOR の最大の特徴である。BL6U は軟 X 線領域(45 〜700 eV)をカバーする直線偏光ビームラインである。③分子科学で重要となる CNO 吸収端の光を用い，元素選択的な共鳴励起によって価電子帯の原子軌道構成を解明できる共鳴光電子分光の実験を成功させた。特に，吸収端でグラファイトの π バンドが選択的に励起される様子を波数空間上で可視化したが，共鳴 Auger 電子スペクトルに価電子帯分散が現われる現象の発見は重要である。グラファイトから π 共役系分子への展開に歩を進め，お家芸としての共鳴光電子回折法を確立しつつある。本年は「運動量分解光電子顕微鏡法」を新たに確立しグラファイトの单原子層ステップの可視化に成功し，プレスリリースを行った。④光エネルギー可変性を活かした k_z 分散測定による全 Brillouin 域価電子帯分散マッピングや偏光特性を活かした原子軌道波動関数解析技術は BL6U での共同研究推進の基盤であるが，さらに精緻な測定を行い，表面特有の電子状態や現象の情報を引き出す研究展開を進めている。
研究活動の現状

B-1）学術論文

松井文彦,「光電子運動量顕微鏡:局所フェルミオロジーと内殻共鳴」, 原子力, 57(7), 423 (2022).

B-4）招待講演

松井文彦,「もう一つの顕微ARPES：光電子運動量顕微法 世界動向とUVSORの現状」, ナノテラスARPESシンポジウム, 仙台, 2023年 2月。

松井文彦,「UVSORにおける先端計測拠点構築：光電子運動量顕微鏡」, 日本表面真空学会中部支部研究会, 名古屋, 2022年 11月。
F. MATSUI, “Photoelectron Momentum Microscope at UVSOR-III BL6U, Okazaki,” DESY PETRA-3 seminar, Hamburg (Germany), November 2022.

B-5) 特許出願

B-7) 学会および社会的活動
学協会役員等
学会の組織委員等
表面構造に関する国際学会ICSOS 国際アドバイザー委員 (2017–).
文部科学省、学術振興会、大学利用機関等の委員等
日本学術振興会 R026 先端計測技術の将来設計委員会運営委員 (2019–).
学会誌編集委員
日本表面真空学会出版委員 (2013–).

B-8) 大学等での講義、客員
総合研究大学院大学物理科学研究科、「光物理」, 2022年7月–2022年8月.

B-10) 競争的資金
科研費基盤研究(C), 「全角取り込み光電子分光法の開発」, 松田博之 (2021年度–2025年度).
科研費国際共同研究加速基金 (国際共同研究強化(B)), 「光電子波数顕微鏡法で切り拓くナノスピン・オービトロニクス」 (代表：解良一聡), 松井文彦 (研究分担者) (2019年度–2022年度).
科研費挑戦的研究(開拓), 「ドーパントの価数ごとの立体原子配列を観測する小型測定装置の研究」 (代表：松下智裕), 松井文彦 (研究分担者) (2021年度–2025年度).

B-11) 産学連携
C) 研究活動の課題と展望

UVSOR型Momentum Microscope（MM）利用研究を推進する。顕微角度分解光電子分光、共鳴光電子分光、3D波数空間分解光電子分光法を協力研究に供するとともに自身の表面物性科学研究を進める。軟X線ビームラインとUVビームライン両方を同時にMMに導くtwo-beam MM実験ステーションをデザインし、建設段階に入った。2020年度は片方（BL6U）での運用が始まった。2022年度に2Dスピンフィルタを導入し、9月末にデータ取得開始にこぎつけた。2022年度以降2本目のビームラインに接続、MMの将来の拡張として2次元スピン検出器を用いたスピン分解光電子分光によるスピン物性研究の展開を計画しているが、その基礎研究として磁性薄膜・キラル分子膜の電子状態・原子構造研究を進める。

MM開発の先駆者がいるForschungszentrum Jülich（FZJ）の電子物性部門（PGI-6）と学術協定を結び、表面電子物性の共同研究を進めてきたおかげで、UVSORでもMMが順調に立ち上がった。時間分解型のMM開発を進めるドイツ・DESYのM. Hoeschらとも共同研究を密にし、こちらからスピン研究に関して相手から時間分解測定法に関して経験技術交流を進めている。本装置を活かした実験を積極的に進めるユーザーコミュニティ構築のための第1回（2019）・第2回（2020.10）国際ワークショップ・第3回（2022.10）国際会議特別セッション共催に続き、東アジア圏でのMM開発グループのネットワークづくりに取り掛かり、またFHI・HiSOR・ALS各機関との合同セミナーで招待講演を行った。UVSORの国内外からのビジビリティを高めるとともに、他のビームラインにも先端拠点を目指す機運と風土の定着を活動指針として進めている。
田中清尚（准教授）（2014年4月1日着任）

杉本卓史（特別共同利用研究員）
保科拓海（特別共同利用研究員）
小山正太郎（特別共同利用研究員）
三田愛也（特別共同利用研究員）
石原麻由美（事務支援員）
加茂恭子（事務支援員）

A-1) 専門領域：物性物理学、放射光科学

A-2) 研究課題：
 a) 高温超伝導体の電子状態の解明
 b) 新規スピン分解角度分解光電子分光装置の開発
 c) 角度分解光電子分光における低温技術の開発

A-3) 研究活動の概略と主な成果
 a) UVSOR BL7U、BL5Uにおいて、銅酸化物高温超伝導体Bi2213の角度分解光電子分光測定を行った。Bi2223では結晶構造に起因する2種類のCuO2面（IPとOP）が存在し、それぞれに対応するバンド分散が観測できるが、運動量空間上でノードとアンチノードと呼ばれる領域を結ぶ中間領域においてIPとOPバンドが交差し、その交差点においてバンド分散に異常が観測されることを発見した。二つのCuO2面での電子のポップングや、種々の格子振動との結合を仮定したスペクトルのシミュレーションを行うことで、バンド分散の異常を再現できることが分かった。この結果は格子振動と電子の結合が、この系では重要であることを示唆している。また理論計算により、スピン回転だけではなく格子振動も高温超伝導の実現に必要であるという、今回の観測結果を支持する結果を得ることができた。

b) UVSOR BL5Uでは高効率スピン分解角度分解光電子分光測定の開発を進めている。これまでAu(111)表面バンドのラッシュバ分裂をスピン分解してイメージスペクトルを取得することに成功し、運動量空間分解能や検出効率なども既存システムを大きく上回ることも確認できている。ただし、測定時には頻繁にスピンターゲットの磁化操作をする必要があり、このままではユーザー利用を開始することは困難であることが判明した。スピンの向きをあらゆる方向に変更できるスピンマニピュレータを導入し、スピンターゲットの磁化操作を不要とすることに成功したが、スピンマニピュレータのパラメータ整備が必要となっている。パラメータの整備を完了してユーザー利用開始を目指す予定である。

c) 角度分解光電子分光実験の高エネルギー分解能測定には、試料をどれだけ冷却できるかが重要となる。BL5U、7U用に開発した冷却可能な5軸6軸マニピュレータは、これまで放射光施設の光電子分光装置としては世界でもトップクラスの低温を実現している。最近新たにソフトウェアによる熱伝導解析を導入した。新たな改良案に基づいて、現在さらなる低温化を目指して開発を進めている。
研究活動の現状

B-1) 学術論文

C) 研究活動の課題と展望

開発中のスピン分解ARPESシステムは、目標としていたイメージでのスピン分解放スペクトルの取得に成功し、運動量空間分解能や検出効率なども既存システムを大きく上回ることも確認できている。ユーザー利用を目指して、スピンの向きをあらゆる方向に変更できるスピンマニピュレータを導入したが、電子レンズ系のパラメータ整備に時間がかかっている。できるだけ早期にパラメータの整備を完了してユーザー利用開始を目指す予定である。
光化学測定器開発研究部門（極端紫外光研究施設）

荒 木 畢（主任研究員）（2023年1月1日着任）

石原 麻由美（事務支援員）
加茂 恭子（事務支援員）

A-1) 専門領域:放射光科学

A-2) 研究課題:
a) Scanning Transmission X-Ray Microscopy（STXM）ビームラインにおける他の検出方法の検討
b) STXMを用いた応用研究とそのための試料環境開発
c) Resonant Soft X-Ray Scattering/Reflectivity（RSoXS/R）及びSTXMの生命科学研究への適用

A-3) 研究活動の概略と主な成果
a) Swiss Light Sourceと共同でAFMとSTXMを組み合わせた装置の導入およびその周辺技術の検討を行なった。
b) 上記に関係して、ユーザー及びSwiss Light Sourceとの共同開発研究に関する打ち合わせを行った。2023年1月に着任以来、前任者（今年度クロスアポイントメント）の大東氏からの引き継ぎを行って来た。ビームライン・エンドステーションの現状と民間利用も含めたユーザーサイエンスの把握に努めつつ、ユーザー実験のサポートを行なった。
c) 両手法を軸にしたUVSORにおける生命科学研究を岡崎3機関連携のもとで進めるための準備を行なってきた。1月に実施された研究会では、両手法の生命科学研究への適用を念頭にした解説を行い、その後、個別の議論・テスト実験も行なった。また、昨年11月に日本におけるRSoXS/Rの普及と発展を目指して、関係する放射光施設及びユーザーとこの手法をリードしている米国Advanced Light SourceのDr. Cheng Wang氏による講演を内容とする研究会を開催した。

B-1) 学術論文
B-4) 招待講演
荒木 暢, 「世界の軟X線イメージングの現状」, 第36回日本放射光学会年会・放射光科学合同シンポジウム特別企画講演「いよいよ動き出すNanoTerasu——整備状況とサイエンスの展開——」, 荒木市, 2023年1月.
荒木 暢, 「マルチプローブを用いたソフト界面解析技術~量子ビームの枠を超えたマルチプローブ実験の普及を目指して」, CIQuS研究会, つくば市, 2023年3月.

B-8) 大学等での講義, 客員
Diamond Light Source, Visiting Scientist, 2023年—.
A-1) 専門領域: 軟X線分子分光、光化学反応動力学

A-2) 研究課題:
 a) 軟X線共鳴散乱法によるソフトマターのメゾスコピック構造解析
 b) X線自由電子レーザーを用いた溶液光学反応のフェムト秒実時間観測手法の開発

A-3) 研究活動の概略と主な成果
 a) 共鳴軟X線散乱の開発を通して、ポリマーや液晶などを含むソフトマターのメゾスコピック領域の構造解析技術の開発を行っている。ソフトマターは様々な空間スケールで階層構造を持つ物質であり、特に数ナノメートルから数十ナノメートルのメzosコピック領域の構造が、その物質のマイクロな性質を理解するうえで重要である。このようなメゾスコピック領域の構造解析法とし従来X線小角散乱が広く用いられているが、非共鳴におけるX線散乱は電子密度の変調に敏感であるが、平均原子番号の近い化学種ごとの構造解析は難しい。そのため、ポリマー・ブレンドなどの異なる化学種の複合材に対しては、化学種を選別したメゾスコピック領域の構造解析法の開発が望まれている。共鳴軟X線散乱法は、化学種ごとに内殻共鳴エネルギーが異なることを利用し、放射光軟X線を用い化学種ごとの構造解析を可能とする。本グループでは2020年度より共鳴軟X線散乱法を実現すべく、散乱観測のための装置開発を行っている。装置の立ち上げでは、液晶分野を専門とする共同研究者らと共にキラルスメクチック液晶を用いて、従来のX線小角散乱法では観測できなかった、強誘電体、反強誘電体およびその副次相による数ナノメートルから10ナノメートルの周期構造に由来する回折像の観測に成功し、本共鳴軟X線散乱法が液晶におけるメゾスコピック領域の構造を明らかにするうえで有用な測定方法であることを示した。本年度は、観測装置の高度化に取り組み、軟X線用のin-vacuum CMOSカメラを用いた検出器回転型の散乱光観測装置の設計・開発を行った。本測定器では、真空チャンバー内で散乱角20°方向に検出器が可動することで、広い散乱角1°から60°までを観測できる。これは炭素の内殻共鳴エネルギー285eV（波長4.4ナノメートル）付近において、散乱ベクトル0.02ナノメートルから1.2ナノメートル、空間スケール約5ナノメートルから300ナノメートルの範囲で構造解析が可能なことに対応する。2023年度より立ち上げ・稼働する予定である。
 b) X線自由電子レーザーSACLA BL1を利用した液体試料用のポンプ・プローブ法によるフェムト秒時間分解・透過型軟X線吸収分光器の開発を提案し、2020年度SACLA基盤開発プログラムに採択され研究を進めている。化学反応の多くは溶液内で起こり、光化学反応を含めた光化学反応を多様な実験条件の中で観測することができる。特に、軟X線領域の化学反応において重要な炭素、窒素、酸素元素のK殻吸収端を含む。これまでの実験結果により高強度のポンプ光によりメンブレンが破損することが明らかになり、メンブレンを用いないマイクロ流路を用いた液厚20〜1000ナノメートルの超薄膜フラットジェット法の開発を行った。また発光分光器の回折格子を更新し、エネルギー分解能ΔE/Eを2000まで向上させた。今後、超薄膜フラットジェットおよび発光分光器を用いた、ポンプ・プローブ法によるフェムト秒時間分解軟X線吸収スペクトルを実現し、溶液の光化学反応を明らかにする。
B-1) 学術論文

B-7) 学会および社会的活動

学会誌編集委員

原子衝突学会学会誌編集委員 (2020–).

B-8) 大学等での講義、客員

理化学研究所, 客員研究員, 2022 年 4 月–2023 年 3 月.
6-6 物質分子科学研究領域

電子構造研究部門

横山利彦（教授）（2002年1月1日着任）

小板谷貴典（助教）
山本航平（助教）
倉橋直也（特任助教（分子科学研究所特別研究員））
BUTTIENS, Thomas（インターンシップ）
小林明斗（特別共同利用研究員）
石川あずさ（事務支援員）
栗田佳子（事務支援員）

A-1）専門領域：表面磁性、X線分光学

A-2）研究課題：
 a）雰囲気制御型硬X線光電子分光法の開発と不均一触媒その場観察への応用
 b）X線磁気円二色性を用いた磁性薄膜の磁気構造解析
 c）X線吸収分光を用いた機能合金の局所構造と熱的性質

A-3）研究活動の概略と主な成果
 a）SPRing-8 BL36XUで我々が開発した雰囲気制御型硬X線光電子分光装置により不均一触媒の反応進行中のオペラン
 ド観測を行っている。本設備は NEDO 燃料電池プロジェクトにより導入され、固体高分子形燃料電池（PEFC）電極
 触媒の in situ 測定を行っていたが、NEDO 終了後は、より一般的な不均一触媒等について対象を拡げて研究を遂行
 しているものである。
 b）分子研シンクロトロン放射光施設 UVSOR-III BL4B を用いた高磁場極低温X線磁気円二色性法（XMCD）を共同利
 用公開し、様々な磁性薄膜の磁気特性検討について国内外との共同研究を広く実施している。また、磁性薄膜の原
 子層毎の磁性を解析するべく軟X線反射率測定技術開発を行っているところである。
 c）X線吸収分光を用いて、強磁性などの機能を発現する合金の局所構造と熱的性質を理論計算を含めて検討している。

B-1）学術論文

10.1039/D2CP05035H

K. KAWAGUCHI, T. MIYAMACHI, T. GOZLINSKI, T. HIMORI, Y. TAKAHASHI, T. HATTORI, K. YAMAMOTO,
T. KOITAYA, H. IWAYAMA, O. ISHIYAMA, E. NAKAMURA, M. KOTSURI, W. WULFHEKEL, T. YOKOYAMA
研究活動の現状

B-2) 国際会議のプーシーディングス

B-3) 総説、著書

B-4) 招待講演

横山利彦, 「燃料電池のその場X線光電子分光と次世代放射光への期待」, 触媒学会次世代放射光WG 公開シンボジウム, 仙台, 2022年6月。

横山利彦, 「雰囲気制御硬X線光電子分光と燃料電池・触媒反応その場観察への応用」, 2022年度立命館大学SRセンター研究成果報告会, 草津, 2022年9月。

B-7) 学会および社会的活動

学協会役員等

触媒学会次世代放射光ワーキンググループ委員 (2021–2022)。（小板谷貴典）
研究活動の現状

文部科学省、学術振興会、大学共同利用機関等の委員等

広島大学放射光科学研究センター協議会委員 (2020–)

その他

文部科学省マテリアル先端リサーチインフラ「マテリアルの高度循環のための技術 スポーク機関」業務主任者 (2021–2031).

文部科学省マテリアル先端リサーチインフラ「運営機構横断領域 (物質・材料合成)」業務主任者 (2022–2031).

B-10) 競争的資金

科研費基盤研究(A)，「液体を反応場とした動的オペランド硬X線光電子分光システムの開発」（代表：横山利彦）、小板谷貴典（研究分担者）、山本航平（研究分担者） (2021年度–2023年度).

科研費基盤研究(C)，「オペランド分光測定による二酸化炭素の電気化学還元反応機構の解明」、小板谷貴典 (2022年度–2024年度).

科研費若手研究、「共鳴X線磁気反射率測定による磁性体多層膜の内部構造の解明」、山本航平 (2021年度–2023年度).

C) 研究活動の課題と展望

2002年1月着任以降、磁性薄膜の表面分子科学的制御と新しい磁気光学分光法の開発を主テーマとして、高磁場極低温X線磁気円二色性(USOR)や紫外磁気円二色性光電子顕微鏡の発明、広域X線吸収構造(EXAFS)法と経路積分法によるインバー等磁性合金の熱膨張等の成果を上げてきた。2011年度から、SPring-8の超高輝度硬X線を利用した燃料電池のin situ雰囲気制御型硬X線光電子分光の開発を行い、2017年度には完全大気圧での光電子分光観測に成功した。光電子分光は、燃料電池内の構成成分の電位を電極なしに観測可能な有効手法であることを示し、今後もこれを中心課題に据えた研究を推進する。さらに、2013年度からは放射光やX線自由電子レーザーを用いた(超)高速時間分解X線吸収法の開発研究を行ってきた。2022年度は、SPring-8を用いた雰囲気制御光電子分光等を用いた表面化学反応研究、UVSORを用いた共鳴X線磁気散乱による磁性薄膜解析、KEK-PFを用いた合金のEXAFS局所構造解析等を行った。本年度は2022年8月に小板谷助教が転出、2023年4月に山本助教が転出（予定）、2022年12月に倉橋特任助教が着任、もう1名の特任助教を公募中であり、人の移動が激しかった。退職まで3年であるが、非弾性共鳴X線散乱等を視野に入れた新たな展開を検討中である。
杉本敏樹（准教授）（2018年5月1日着任）

桜井敦教（助教）
斎藤晃（特任研究員）
市井智章（特任研究員）
高橋翔太（特任研究員）
鶴岡和幸（特任専門員）
佐藤宏祐（大学院生）
林仲秋（大学院生）
野口直樹（大学院生）
望月達人（大学院生）
金成翔（大学院生）
吉澤龍（大学院生）
志村真希（事務支援員）

A-1) 専門領域：物理化学，分光学，機能物性化学，表面界面科学

A-2) 研究課題：
 a) メタン活性化光触媒反応系における新奇な水・金属助触媒効果の発見
 b) 高感度ラマン分光計測法の開発と電子非共鳴・表面プラズモン共鳴から脱却した表面分子吸着系の汎用的ラマン観測の実現
 c) 高次非線形分光法の開発と埋没界面フォノン・分子観測への応用
 d) 二次非線形極微分光法の開発と金属ナノギャップにおける局所・非局所非線形光学応答現象の発見

A-3) 研究活動の概略と主な成果
 a) 天然ガス中に豊富に含まれる資源であるメタンを光により活性化させ、化学的変換により付加価値の高い分子に変換させる光触媒技術は持続可能な社会の実現に向けて重要である。我々は、水蒸気圧力を制御して水分子の吸着量を第一層（10層程度）まで系統的に変化させながら光触媒によるメタン転換反応を調べたところ、水分子吸着層の厚さが二分子層程度においてメタンの非酸化カップリング（2CH₄ → C₂H₆ + H₂）によるエタン生成効率が顕著に増大することを見出した。このメタンカップリングの反応系では水分子が関与しないため、この現象の分子起源を探るべく、水分子同位体（D₂O）を用いたメタン転換光触媒過程のオペランド赤外分光計測を行った。その結果、吸着水分子は光触媒触媒中水酸基ラジカルとなり、それがメタンから水素をバリアレスに引き抜きメチルラジカルを効率的に生成させ（CH₄ + OD → CH₃ + HDO）、そのメチルラジカル同士のカップリングによりエタン生成反応が誘起されている（2CH₃ → C₂H₆）事実を示した（Sato et al., Communications Chemistry 6, 8 (2023)）。また、我々は、PtやPdなどの種々の金属助触媒を用いてメタン活性化光触媒反応を系統的に調べ、更に表面反応系のオペランド赤外分光計測を行うことにより、担持する金属種に依存してメタンと水の混合系における赤外酸化反応が異なった（Sato et al., 研究活動の現状）。
b) 二つの光の差周波の唸りによって分子振動を共鳴励起（強制振動）させる非線形ラマン分光法に着目し、MHz高繰り返しフェムト秒レーザーをベースとして時間的に非対称なパルス波形の成形とパルス遅延の精密制御を導入することで、電子共鳴あるいはプラズモン共鳴を用いて信号増大させることができない表面吸着分子系についても汎用的なかつ高感度にラマン活性モードの観測を可能とする新しい界面非線形形分光法を開発した。この新規方法論により、三次非線形ラマン分光法を表面界面系に適用する際に問題となるパルク由来の非共鳴バックグラウンド信号を4桁以上低減させることができた。これにより、我々は代表的な金属・絶縁体の表面分子系としてPt(111)・Au(111)・SiO2(0001)基板表面に吸着した水分子の超薄膜やサブナノメートル薄さの自己組織化単分子膜の計測に成功した[論文2報準備・投稿中, Haruyama et al., Vac. Surf. Sci. 65, 355 (2022)]。とりわけ、水分子超薄膜系においては、協同的な水素結合振動に起因するラマン活性モードの観測・解析から100 K～150 Kの温度領域においてアモルファスの水素結合ネットワークが結晶化することを捉えることに成功し、自己組織化単分子膜においても集合構造の違いに起因した低振動数・高振動数ラマン活性モードを捉えることに成功した[Ichii et al., 論文投稿中]。

c) 和波波発生振動分光法に代表される二次非線形分光法は空間反転対称性が破れたドメインに選択性的な計測手法であり、表面界面観測に広く用いられている。しかし、振動励起に赤外光を用いるため、赤外光が透過しない“物質に埋没した界面”の観測には適用できない。これを克服するため、物質中を通る二つの光の差周波の唸りで分子振動を共鳴励起（強制振動）させ、それを第二高調波でコヒーレントにアップコンバージョンさせる四次非線形光学過程に基づく振動分光法を展開し始めた。特に、この手法を用いて、空間反転対称性が無い水晶(SiO2)薄膜の観測に透過配置と反射配置でそれぞれ成功し、その強度比から、その信号光が二次と三次のカスケード過程に由来するものではなく、四次非線形光学過程に由来するものであることを確認した。また、パルク水晶に埋没した界面振動モードの観測に成功した[Yoshizawa et al., 論文準備中]。

d) 走査トンネル顕微鏡と和波波発生振動分光法を組み合わせ、水分子吸着系の水素結合ネットワークにおいて機能発現のカギを握る重要な構造情報である“水分子の配向（水素のH-up・H-down配置）”を高い空間分解能で観測する二次非線形極微分光法（探針増強和波波発生振動分光法）の開発に世界に先駆けて取り組んでいる。その要素技術として、①先端形状を制御したプラズモニックAuナノ探針の作成[Mochizuki et al., 論文準備中]、及び②光の回折限界以下のナノ探針先端領域からのSTM発光及び探針増強ラマン信号の検知、に成功してきた。現在、我々は数10MHzオーダーの高繰り返しレーザー光源を用いた赤外波長可変OPOシステムとの融合を経て、可視域から中赤外領域にわたる幅広い波長領域においてAuナノ探針-Au(111)基板間のナノギャップにおける二次非線形光学応答の計測に成功するに至った。その結果、プラズモン共鳴による可視域よりもむしろ赤外領域の光入射においてナノギャップから強く第二高調波が発生するという特異な近接場非線形光学応答を見出した[Takahashi, Sakurai et al., 論文準備中]。この特異な近接場非線形光学応答を把握し制御・高度利活用することにより、現在、ナノギャップに配置した種々のモデル分子の近接場和波波発生（振動共鳴）信号の検出にも成功し始めている[Sakurai et al., 論文準備中]。

B-1) 学術論文

B-3) 総説、著書
DOI: 10.1016/j.ccr.2022.214773

B-4) 招待講演
杉本敏樹,「実触媒科学と表面科学を融合させるオペランド分光研究の挑戦」, 触媒学会若手部会「第33回フレッシュマンゼミナール」, オンライン開催, 2022年5月.
杉本敏樹,「和周波発生振動分光法で拓く物質表面界面における水分子の特異構造・機能物性化学」, 三井化学分析センター技術交流会, 千葉, 袖ヶ浦, 2022年11月.
杉本敏樹,「固体表面水分子凝集系の構造物性に迫る非線形振動分光」, 量子科学技術研究開発機構セミナー, 奈良, 2023年2月.

B-7) 学会および社会的活動
学協会役員等
日本表面真空学会若手部会幹事 (2018–).
分子科学会運営委員 (2020–).
学会の組織委員等
International Workshop on Nonlinear Optics at Interfaces 2023, Conference vice Chair (2019–2024).
表面界面スペクトロスコピー2022研究会主催 (2022).
文部科学省、学術振興会、大学共同利用機関等の委員等
JST研究開発戦略センター（CRDS）材料科学分野研究ワークショップグループリーダー (2023).
その他
分子科学若手の会夏の学校分子科学研究所対応者 (2018–).

B-8) 大学等での講義、客員
理化学研究所、客員研究員, 2021年4月-2024年3月.

B-9) 学位授与
佐藤宏祐,「オペランド分光計測に基づく光触媒メタン転換反応の微視的メカニズム解明」, 2023年3月, 博士 (理学).

研究活動の現状
B-10) 競争的資金
科研費挑戦的国研究(萌芽)、「高感度非線形ラマン分光法による物理吸着水素分子の極低温量子ダイナミクスの直接観察」, 杉本敏樹 (2021年度−2022年度)。
科研費基盤研究(A)、「新原理高次非線形分光法で拓く未踏の電気化学固波ナノ界面水研究」, 杉本敏樹 (2022年度−2024年度)。
科学技术振興機構さきがけ研究、「原子スケール極微和固波分光法の開発と界面水分子の局所配向イメージングへの応用展開」, 杉本敏樹 (2019年度−2022年度)。
科学技术振興機構CREST研究(受託研究)、「in-situ 高次非線形分光によるアップサイクリング反応場観測」（代表：斎藤 進）, 杉本敏樹（共同研究者） (2022年度−2027年度)。
早稲田大学環境省委託事業「地域資源循環を通じた脱炭素化に向け革新的触媒技術の開発・実証事業」（受託研究）、「革新的多元合金触媒・反応場活用による省エネ地域資源循環を実現する技術開発（非在来型触媒反応による次世代プロセス開発と学理構築）」（代表：関根 泰）, 杉本敏樹（共同実施者） (2022年度−2029年度)。

C) 研究活動の課題と展望
表面界面系の分子計測法の限界突破を目指し, 従来の手法では困難であった①プラズモン共鳴・電子共鳴が利用できない表面界面少数分子系に対しても汎用的に振動分光計測を可能とする新しい非線形分光計測法の開発, 並びに②光の回折限界以下のナノスケールで表面界面分子系の観測を可能とする新たな極微非線形分光法の開発に従事してきた。また, こうした地道かつ先進的な手法開発・挑戦と同時平行的に, ③光触媒微粒子をはじめとする複雑な実材系の表面界面分子科学現象の開拓にも取り組んできた。2018年5月に当研究室が発足してからの4年間において, これら3つの基軸で挑戦してきた分野先導的な試みは芽を出し大きく開花しつつあり, 現在, それぞれにおいて相当規模の競争的資金の獲得と共に共同研究もすすんできている。
今後は, これまで独立に挑戦してきたこれら3つの取り組みをさらに高度に融合させていくことも注力し, 従来の実験手法で開拓・解明が困難であった未踏の表面界面系領域や実材料系・複雑系界面の分子科学を力強く開拓する。また, それと同時並行的に, このような先端的な計測研究を産学官緊密連携の下で大きく発展・応用させることにより, ①表面界面エンジニアリング・②表面分子戦略に基づく革新的な材料創製・新技術創出に向けた大きな原動力・研究潮流を作り出し, 環境・エネルギー分野をはじめとし人類が直面する重要な社会課題の解決に貢献する。
分子機能研究部門

平 本 昌 宏（教授）（2008年4月1日〜2023年3月31日）*1

伊澤 誠一郎（助教）
足立 和宏（研究員（派遣））
薮谷 和樹（研究員（派遣））
小倉 康子（事務支援員（派遣））

A-1) 専門領域：有機半導体、有機太陽電池、有機エレクトロニクスデバイス

A-2) 研究課題：
a) ドナー／アクセプター接合を利用したフォトンアップコンバージョンと低電圧駆動有機 EL
b) ドーピング有機単結晶薄膜の開発
c) タンデム接合有機太陽電池

A-3) 研究活動の概略と主な成果
a) フォトンアップコンバージョン（UC）は長波長の光を短波長に変換する技術で、低エネルギー光の有効利用や近赤外イメージングなどの応用が期待されている。今回、有機半導体ドナー（D）／アクセプター（A）界面で有機太陽電池の電荷分離・再結合原理を応用した新原理のUCを実現した。発光体としては三重項消滅材料として知られるルブレン、感光体としては近赤外光を吸収するノンフラーレンアクセプタを用い、層状のD/A界面をもつ2層膜を形成した。目に見えない近赤外LED光（太陽光強度の1/10程度）を、2%程度の量子効率で、目視可能な黄色の高輝度発光に変換するフレキシブル薄膜を実現できた。原理は、まず吸収した近赤外光をD/A界面でHOMOオフセットを利用し電荷分離して、スピンがランダムな自由電荷を生成する。それらが再結合する際に界面電荷移動（CT）状態を経て、三重項励起子を生成する。その後、三重項消減を経てルブレンからのS1発光が観測される。本手法は、全固有であり、重原子効果による関係交差が不要であるため希少金属、有害元素が必要ないという利点を持つ。このアップコンバージョン過程を有機ELに応用し、その効率を向上させた結果、乾電池1本分の電圧でディスプレイ並みの明るさで赤色発光ができる、世界最小電圧で駆動する有機ELの開発に成功した。さらに最近、このUC発光を、新たな材料系に展開し、超低電圧駆動の青色有機ELを開発した。用いた材料系は、青色発光体・ドーパント材料はアントラセン誘導体、アクセプター材料はナフタレンジイミド誘導体、蛍光ドーパントはペリレン誘導体である。この青色UC-OLEDは462 nm（2.68 eV）にピーク波長をもつEL発光を示した。このデバイスは、光エネルギーに相当する電圧の約半分程度である1.26 Vから発光が開始し、1 cd/m²には1.47 V、100 cd/m²には1.97 Vで到達するという超低電圧での青色発光を示した。その結果、1.5 Vの乾電池を1本つなぐだけで青色発光が観測できるデバイスの開発に成功した。

b) 熱拡散法によって、ルブレんですが結晶へアクセプター（F4-TCNQ）をドーピングする初の試みを行った。単結晶表面にF4-TCNQを2 nmまたは20 nm蒸着し、真空で60℃で加熱すると熱處理30分以内で拡散が完了し、ルブレン単結晶の厚さ（c軸）方向の比伝導度は、10⁻⁷から2×10⁻² Scm⁻¹に1万倍以上増大し、60 Acm⁻²に達する非常に大きな電流を流すことができた。これはホール濃度が10⁸ cm⁻³から10⁹ cm⁻³まで増大したためである。ドーピング
電子とホールを基板に対して水平方向に取り出す「水平交互接合」という、有機太陽電池のための新しい接合構造を提案した。今回、高速移動度を示す、C8-BTBT（ホール移動度: 43 cm²/Vs）とPTCDI-C8（電子移動度: 1.7 cm²/Vs）を積層した2層セルを作製し、1.8 cmという驚異的な水平接合距離で太陽電池動作できた。トラップが無放射再結合を引き起こすことによって、可能な水平距離を決めていることが分かった。さらに、水平接合ではマルチタンデム化によって光電流が増大していくことを実証し、タンデム水平セルによって入射光全てを吸収利用できることを証明した。また、ドーピングによるセル特性の向上にも成功した。

B-1) 学術論文

B-3) 総説、著書

伊澤誠一郎, 森本勝大, 「乾電池1本で高輝度発光する有機ELの開発」, 月刊機能材料, 8, 28–35 (2022).

B-4) 招待講演

平本昌宏, 「新しいフェーズに入った有機太陽電池」, 有機太陽電池研究コンソーシアム定例研究会「次世代太陽電池と有機太陽電池の可能性」, 京都, 2022年11月。

平本昌宏, 「新しいフェーズに入った有機太陽電池」, 高分子学会有機エレクトロニクス研究会「カーボンニュートラル実現に向けた有機薄膜太陽電池の新展開」, 広島, 2022年12月。

平本昌宏, 「新しいフェーズに入った有機太陽電池」, 電子情報通信学会有機エレクトロニクス研究会(OME), 日間賀島, 南知多町(愛知), 2023年1月。

平本昌宏, 「有機半導体光電変換デバイスの発展と未来」, 省エネルギー学会2023年春季学術講演会シンポジウム「有機半導体デバイスの現在・過去・未来；光電変換を中心として」, 東京, 2023年3月。

伊澤誠一郎, 「有機半導体界面を利用した光機能・デバイスの創出」, Material Science Seminar 2022, 仙台, 2022年5月。

伊澤誠一郎, 「有機半導体界面を舞台にした高効率光エネルギー変換」, InterOpto2022, 東京, 2022年6月。
伊澤誠一郎、「有機半導体界面での電荷移動状態を利用した光アップコンバージョン」，第24回分子性固体オンラインセミナー，オンライン開催，2022年8月。

M. HIRAMOTO，"Carrier generation in high-mobility organic semiconductors，" 13th International Conference on Nano-Molecular Electronics (ICNME2022)，Tokyo (Japan)，December 2022。

S. IZAWA，"Efficient Interfacial Upconversion Emission in Organic Semiconductor Devices，" 12th International Symposium on Organic Molecular Electronics，Tokyo，May 2022。

S. IZAWA，"Efficient Solid-State Photon Upconversion Enabled by Triplet Formation at Organic Semiconductor Interface，" 241st Meeting of the Electrochemical Society，Vancouver (Canada)，May 2022。

B-5) 特許出願 PCT/JP2022/016598，「有機EL素子」，伊澤誠一郎，平本昌宏，森本勝大，中茂樹 (自然科学研究機構，富山大学)，2022年。

B-6) 受賞、表彰

S. IZAWA，Journal of Materials Chemistry A，Emerging Investigators (2022)。

伊澤誠一郎，自然科学研究機構若手研究者賞 (2022)。

伊澤誠一郎，分子科学研究奨励森野基金 (2022)。

B-7) 学会および社会的活動

学協会役員等

応用物理学会有機分子・バイオエレクトロニクス分科会常任幹事 編集・企画担当 (2020-). (伊澤誠一郎)

応用物理学会Multidisciplinary Young Researcher Chapter 副代表 (2020-). (伊澤誠一郎)

学会の組織委員等

Korea-Japan Joint Forum (KJF)—Organic Materials for Electronics and Photonics，Organization Committee Member (2003-)。

学会誌編集委員

Organic Solar Cells Energetic and Nanostructural Design，Springer Editor (2020-2021)。

Organic Solar Cells Energetic and Nanostructural Design，Springer Editor (2020-2021)。 (伊澤誠一郎)

競争的資金等の領域長等

NEDO 先導研究プログラム／エネルギー・環境新技術先導研究プログラム「高効率シースルー有機薄膜太陽電池を用いた革新的発電窓の研究開発」研究開発推進委員会委員長 (2021.4-2023)。

B-10) 競争的資金

科研費学術変革領域研究(A) (公募研究)，「動的エキシトンを利用した新原理フォトンアップコンバージョン」，伊澤誠一郎 (2021年度-2022年度)。
科研費若手研究、「有機半導体界面でのスピン反転機構を利用した光機能の創出」、伊澤誠一郎 (2022年度–2023年度)。
科学技术振興機構さきがけ研究、「界面アップコンバージョンが可能とする革新的光変換」、伊澤誠一郎 (2021年度–2022年度)。
科研費基盤研究(C)（一般）、「優れたn型半導体特性を実現するフレキシブルグラフェンナノリボンの開発」（代表：高橋雅樹）、平本昌宏（研究分担者）、伊澤誠一郎（研究分担者） (2021年度–2023年度)。

C) 研究活動の課題と展望
平本は、研究員1名を雇用し、「有機単結晶エレクトロニクス」「水平接合有機太陽電池の開発」の研究を推進している。伊澤助教は、「有機薄膜によるフォトンアップコンバージョンと低電圧駆動有機 EL デバイスに関する研究」を推進し、研究室の柱になっている。静岡大、富山大、東京理科大、等と共同研究し、多くの論文が掲載されている。
多数の受賞、JST さきがけ研究者への選出、Nature Photonics への論文掲載など、着実に独立した研究者への道を歩み、2023年1月1日に付けで、東京工業大学フロンティア材料研究所の准教授として転出した。平本は、Springer Nature に、「Organic Photocurrent Multiplication」のタイトルで英語本の執筆を完了しており、今年中に出版予定である。平本は2023.3.31付けで定年退職となるため、平本グループの装置類を、主に、伊澤助教の転出先である東工大に移設し、3月初めに全ての装置類の譲渡、廃棄が完了した。

※）2023年3月31日定年退職
A-2) 研究課題：
a) 安定同位体非標識脂質分子の13C信号帰属に資する新規固体NMR測定法の開発
b) 固体NMRを用いたプリオンフラグメントと脂質膜の特異的相互作用の解析
c) クムシ由来高耐熱性タンパク質の固体NMRを用いた構造解析
d) 固体NMRによる糖鎖脂質含有脂質二重膜上での会合状態の解析
e) 固体NMRによる有機分子材料の解析
f) 独自固体NMRブローヒのための要素技術の開発

A-3) 研究活動の概要と主な成果
a) 脂質二重膜の構成脂質分子に関して天然存在比安定同位体13Cを観測して、高い分子運動性を示す液晶相における脂質分子の13C信号帰属に資する新規固体NMR測定法の開発を試みた。脂質分子と同様な運動性を有する有機低分子を参照試料として、同測定法を適用し、有効性の確認まで完了している。さらに信号重複が激しい部位に関して正確な信号帰属を達成するため、上記の新規測定法の拡張版を検討中である。

b) ヒトプリオン病は、生体中に存在する正常型のプリオンタンパク質(PrPc)の高次構造がβシートリッチな感染型(PrPSc)に変換され、不溶性アミロイド繊維が形成され発症すると考えられている。本研究では同タンパク質の構造転移機構の解明を最終目的としている。全長ヒトプリオンと同様な脂質結合活性を有し、細胞毒性が報告されている106から126残基に相当するPrP(106-126)が、PrPの構造転移が示唆されている細胞膜表面のカベオラの主要脂質成分を単純化したGM1含有リポソームに結合したプロテオリポソームに関して、1D 13C固体NMRによる解析を行った。
現在測定結果の解析、検討を行っている。本研究は国立感染症研究所の谷生道一博士との共同研究である。

c) クムシは特徴的な睡眠メカニズムを有し、乾燥状態で数十年生存することが可能である。これには、クムシ固有のタンパク質が関与していると考えられているが、その詳細は不明である。クムシの中で構成タンパク質の内、良く研究されている熱耐性が非常に高いsecretory abundant heat soluble(SAHS)タンパク質の乾燥状態での分子構造を固体NMRを用いて解析することを試みた。本研究は、名古屋市立大学佐藤倉史准教授、矢木宏和准教授グループと分子研加藤晃一教授のグループとの共同研究である。改良型試料調製法により調製した特定残基のみ13C全安定同位体標識したSAHSタンパク質試料、さらに複数の変異体型同タンパク質試料に2次元13C同種核間相関固体NMR測定法などを適用し、信号帰属を完了した。さらに同タンパク質の二次構造変化の検証を完了した。

d) これまでアルツハイマー型認知症の発症への関与が示唆されるアミロイドβ(Aβ)の糖鎖脂質GM1含有脂質二重膜上で同固体NMRを用いた構造解析を行ってきた。同研究の学術論文の投稿において、同タンパク質と脂質膜の直接的な相互作用の固体NMRによる解析結果の要求が生じたため、paramagnetic relaxation enhancement(PRE)を用いた方法で、以前行った手法とは異なるアプローチでAβが脂質膜面に存在していることを実証する実験を行い、その立証に成功した。
研究活動の現状

e) 分子科学研究所の瀬川泰知准教授のグループで独自に合成された有機分子の状態解析を固体 NMR を用いて行っている。1H 核が少ないことから天然存在比同位体観測による構造同定は有効な手法が限られており、十分な情報が得られていない。現在、^{13}C 核を中心に他核種の検討も行っている。

f) 現在使用している Bruker 社製分光器、および周辺機器と完全互換性を有する独自の固体 NMR プローブの開発を行ってきた。本プローブでは、試料管回転モジュール、および回転検出用の光電圧変換モジュールの 2 部品のみ同社製品を使用した。全ての部品を独自モジュールに置き換えるため、スピニングモジュール、および回転検出用の光電圧変換モジュールの開発を行っている。自作のスピニングモジュールは、メーカー純正の自動回転コントローラーを用いて同社市販品と同一の最高回転周波数を達成した。更に、自作のマニュアル回転コントローラーで独自の圧力変数を用いることにより市販品の最高回転周波数を超える周波数で安定的に回転可能であるところまで確認を完了した。しかし、著しい高速回転テストを行った際、クラッシュして一部部品が破損したため、市販品を超える高速域での回転安定性の向上、および市販品の最高回転周波数の向上をめざして 2 種類の改良版の開発を進めてきた。再度のクラッシュの後、独自に達成した回転周波数領域では、市販の市販品の材料であるジルコニアの材料強度が不足していることが判明した。このため、より高強度な材料を用いた探査管を作成しない限り、遠心力による試料管の破壊が生じることが判明した。現在、これまでと同様の完全互換版と独自仕様の 2 種類の異なる設計でスピニングモジュールの開発を進めている。

B-8) 大学等での講義、客員
総合研究大学院大学物理科学研究科、講義「機能生体分子科学」、2023年1月。

C) 研究活動の課題と展望
独自開発プローブの全ての部品を独自設計品に置き換えるためのモジュール開発も進んでおり、残り2つとなった。過去 2 年程、最难関のスピニングモジュールの開発を行ってきたが、遂に純正コントローラーを用いて市販品と同じ最高回転周波数を達成することができた。さらに市販品を超えた最高回転周波数を独自条件で達成できた。現状の設計で、同一試料管外径で世界最高速を達成している。しかし、独自に達成した高回転速度域では試料管の素材であるジルコニアの材料強度が不足していることが判明した。このため、より高強度な材料を持続性を用いた探査管を作成しない限り、遠心力による試料管の破壊が生じることが判明した。現在、これまでと同様の完全互換版と独自仕様の 2 種類の異なる設計でスピニングモジュールの開発を進めている。

これまで何年間か、上述のような性質の異なる全ての作業を一人で行ってきたが、生産性に限界があり、特に新規試料の調製初期段階では多くの地道な作業が必要である。これが、試料調製を担う有能なスタッフを他求しているが、良い人材確保が難しい状況である。
小 林 玄 器（准教授）(2018年4月1日〜2022年5月31日)*}

竹入 史隆（助教）
内村 祐（大学院生）
岡本 啓（大学院生）
泉 善貴（大学院生）
楠本 恵子（大学院生）
今井 弓子（技術支援員）
久保田 亜紀子（技術支援員）
神谷 美穂（事務支援員）

A-1) 専門領域：無機固体化学、固体イオニクス、電気化学、蓄電・発電デバイス

A-2) 研究課題：
 a) H−導電性化合物の物質探索
 b) H−導電性化合物のイオン導電機構解析
 c) H−のイオン導電現象を利用した新規イオニクスデバイスの創成

A-3) 研究活動の概略と主な成果
 a) H−導電体の物質探索では、これまで主な探索対象としていた酸水素化物から、酸素を含まない複合アニオン水素化物や金属水素化物へと探索対象を拡げた。新たに発見した水素化硫化物LaA3H3S（A = Ba, Sr）は、400 ℃で1 mS/cmに達するイオン導電率を示すだけでなく、大気下での化学安定性を獲得した。蛍石構造をとる金属水素化物では、独自の合成法によって電子伝導性的抑制に成功し、室温〜100 ℃において固体電解質として機能することを実証した。また、電極への応用を見据えた水素・電子混合導電体の物質探索では、非加熱合成プロセスであるメカノケミカル法を適用することによってBaTiO3−xHx中的H−の固溶限界を拡張することに成功し、イオン導電性が向上する傾向を捉えた。また、スパッタ法により成膜した同物質の多結晶膜の組成を確認し、遷移金属酸水素化物の直接成膜に初めて成功した。
 b) 相転移によってH−超イオン導電性が発現するBa1.75LiH2.7O0.9について、核密度分布解析から超イオン導電状態におけるH−拡散経路を調べた結果、新たな格子間位置へのH−の部分占有と周囲の元素と相関した異方的な熱振動を確認した。いずれも相転移によってH−の拡散機構が変化したことを示唆している。
 c) 上記のBa1.75LiH2.7O0.9を固体電解質として用いた新規電気化学デバイスの開発をおこなっている。これまで、焼結密度の低さ（〜70%）が主要な課題のひとつであったが、新たに導入したホットプレスを用いることで、密度が90%超の焼結体の作成が可能となった。また、焼結密度の違いによって導電率の温度依存性が変化することも捉えており、固体電解質応用に向けた新たな研究方針が得られた。

B-1) 学術論文

222 研究活動の現状

B-4) 招待講演（*基調講演）

小林玄器, 「ヒドリドイオン導電性材料の研究——現状と今後の展望——」, 日本金属学会第 171回講演大会, 福岡, 2022年 9月.

小林玄器, 「層状ペロブスカイト型酸水素化物におけるヒドリド超イオン導電」, 日本 MRS 年次大会, 横浜, 2022年 12月.

小林玄器, 「ヒドリドイオン導電性材料の研究——物質開発の現状と今後の展望——」, 第 82回固体イオニクス研究会, 東工大, 東京, 2022年 11月.

小林玄器, 「ヒドリドイオン導電性材料の開拓」, 電池技術委員会第117回新電池懇談部会, オンライン開催, 2022年 9月.

小林玄器, 「ヒドリドイオン導電性材料の開拓」, アドバンスト・バッテリー技術研究会第 196回定例研究会, 名古屋, 2022年 8月.

竹入史隆, 「ヒドリドの固体化学とイオニクス材料への展開」, 信州大学 RISM セミナー, ハイブリッド開催, 2022年 8月.

小林玄器, 「水素のアニオン ヒドリド が導電する物質系の開拓」, 金沢大学ナノマテリアル研究所講演会, 金沢, 2022年 7月.

小林玄器, 「酸水素化物中にアニオン配列とヒドリドイオン導電特性」, 日本セラミックス協会第 55回基礎科学部会セミナー, 藤倉, 2022年 7月.

G. KOBAYASHI, “Study on hydride ion conductors: Progress and prospects,” Core-to-Core Seminar, Kyoto (Japan) (Online), December 2022.

G. KOBAYASHI, “Effect of anion configuration on the phase transition behavior and hydride ion conductivities in Ba-Li oxyhydrides,” The 5th International Conference on Neutron Scattering 2022, Buenos Aires (Argentina) (Online), August 2022.

B-5) 特許出願
特許登録 JP7067731, 「ヒドリドイオン導電体およびその製造方法」, 小林玄器, 渡邉明尋, 菅野了次, 平山雅章 (東京工業大学, 自然科学研究機構)（登録日 2022年5月6日）。

B-7) 学会および社会的活動
学協会役員等
一般社団法人 日本固体イオニクス学会社員 (2020-)。

B-8) 大学等での講義, 客員
理化学研究所, 客員研究員, 2022年6月–2025年5月. (竹入史隆)

B-9) 学位授与
岡本啓, 「Effects of Compositions and Sintering Process on Phase Transition Behavior and Hydride Ion Conducting Property in K2NiF4-Type Ba-Li Oxyhydride」, 2023年3月, 博士 (理学)。
内村祐, 「Study on Materials Processing for Barium Titanium Oxyhydride with Hydride Ion and Electron Mixed Conductivity」, 2023年3月, 博士 (理学)。

B-10) 競争的資金
科研費挑戦的研究 (萌芽), 「水素の電荷自由度を活用した物質変換デバイスの創出」, 小林玄器 (2022年度–2023年度)。
科研費新学術領域研究 (研究領域提案型), 「H−導電性材料のメカノケミカル合成」, 小林玄器 (2022年度–2023年度)。
科研費基盤研究研究(B), 「ヒドリド導電体の物質科学−低温作動化に向けた物質設計指針の構築−」, 小林玄器 (2020年度–2022年度)。
科学技術振興機構創発的研究支援事業 (研究), 「ヒドリドイオン導電性材料の開拓と新規イオニクスデバイスの創製」, 小林玄器 (2022年度–2023年度)。
科学技術振興機構創発的研究支援事業 (研究), 「複合アニオン水素化物の探索空間拡張とヒドリド導電機能の開拓」, 竹入史隆 (2022年度–2023年度)。
科学技術振興機構さきがけ研究, 「複合アニオン固体電解質を用いたヒドリドインターカレーション反応の開拓」, 竹入史隆 (2020年度–2022年度)。
科研費基盤研究研究 (研究領域提案型) 「ハイドロジェノミクス: 高次水素機能による革新的材料・デバイス・反応プロセスの創成」, 「高速・局所移動水素と電子とのカップリングによる新発想デバイスの設計」 (代表: 森 初果), 小林玄器 (研究分担者) (2018年度–2022年度)。
科研費基盤研究(B), 「軽元素カチオン置換に基づく中低温作動プロトン伝導体の創製」 (代表: 松井敏明), 竹入史隆 (研究分担者) (2020年度–2022年度)。
C) 研究活動の課題と展望

H−導電性酸水素化物の物質探索および新規イオンニクスデバイスの創製

当グループが特に注力しているH−超イオン導電体Ba1.75LiH2.7O0.9（BLHO）に関する成果は、BLHOへの元素置換による超イオン導電相への転移温度の低下と導電率の向上に成功した成果をAdvanced Science誌とJ. Mater. Chem. A誌に発表することができた。本成果の主導的役割を担った学生は、2019年度の日本化学会東海支部長賞に続き、電気化学会第88回大会の優秀学生講演賞（2021）の受賞や分子研SRA採択（2021年10月～）など、高い評価を得ており、2022年3月に博士号を取得した。2023年度は他大学の助教として研究活動を開始することになっている。

BLHOの構造相転移および超イオン導電相についての固体化学的探求は、最大エントロピー法（MEM法）で示された格子間位置の水素によって新たな展開を迎えた。金属における侵入型固溶の例からも明らかなように、水素は特異的に格子間位置を占めやすい元素であるが、それがアニオン種としてのH−超イオン導電においても実現するならば画期的な知見となる。現在、中性子全散乱を用いた局所構造解析（PDF解析）を計画しているほか、共同研究による大規模な分子動力学（MD）計算など、多角的なアプローチによってその現象解明を目指している。

BLHOを固体電解質として用いた電気化学デバイスの開発は、以前にも検討を実施していたが、ガスリーク問題や電極／電解質界面の不安定さなどの課題により中断を余儀なくされていた。しかし、焼結密度の大幅向上（70%台→90%台）を達成したほか、新たなデバイス試験セルを装置開発室と共同設計したことで（現在作成中）、ガスリーク問題には一定の目処がついた。界面についても、以前はBLHOとパラジウム電極との界面不安定性の問題があったが、BaTiO3−xHxが安定な水素透過電極としてはたらすこと、および、その直接成膜が可能になったことで、デバイス開発に再度挑戦できる状況にある。電解質BLHOと電極BaTiO3−xHxからなる対称セルを作成し、外部電場によるH−の反応場への安定供給、ひいてはNH3合成やCO2還元といった水素化反応の促進を目指す。

酸水素化物以外のH−導電体の合成についても水素化ハロゲン化物、水素化硫化物、あるいは金属水素化物といった様々な方向性が見つかっている。また、導電率のみならず、化学安定性や電圧に対する安定性（電位窓の広さ）などの点において、アニオン格子ごとに異なる特徴が引き出されることが明らかになってきた。引き続き物質探索を進めるとともに、高い導電率や安定性の起源を結合状態や電子状態から探ることで、将来的な材料設計指針につながる包括的な議論をおこなう必要がある。

H−を含む化合物の探索は国際的にもイオン交換反応や高圧合成などの特殊手法に依存していたが、簡便なメカノケミカル法による合成を実現できたことには大きな意義がある。BaTiO3−xHxは既知物質だが、合成条件の最適化によってその水素固溶量が増加できる兆候を見出しているほか、他の遷移金属を含む新規酸水素化物も得られている。特に前期遷移金属を含む系との相性のよさが見出されることから、新たな電極材料の探索という位置付けでの検討を継続していく。

*2022年6月1日理化学研究所開拓研究本部主任研究員
6-7 生命・錯体分子科学研究領域

生体分子機能研究部門

青 野 重 利（教授）（2002年5月1日着任）

村木 則文（助教）
NAM, Dayeon（特任研究員（IMS フェロー））
東田 伶（特任研究員（IMS フェロー））
中根 香織（事務支援員）

A-1) 専門領域：生物無機化学

A-2) 研究課題:
a) バクテリアの走化性制御系における酸素センサーシステムの構造機能相関解明
b) 鉄イオンセンサータンパク質の構造機能相関解明

A-3) 研究活動の概略と主な成果
a) HemAT は細菌の酸素に対する走化性制御系を担っている酸素センサータンパク質である。細菌の走化性制御系は、外部シグナルである誘引／忌避物質のセンサーとして機能するシグナルトランスデューサータンパク質（methyl-accepting chemotaxis protein（MCP））と、シグナル伝達・制御に関与する Che タンパク質（CheA, CheW, CheY 等）から構成されている。本研究では、HemAT による酸素センシングおよび、酸素に応答したシグナル伝達反応の分子機構解明を目的として研究を行なった。これまでの研究で、HemAT、CheA、CheW が安定な三者複合体（HemAT/CheA/CheW 複合体）を形成することを明らかにした。生成した HemAT/CheA/CheW 複合体を用い、クライオ電子顕微鏡単粒子解析による複合体の構造解析を行なった。その結果、7.6 Å 分解能で HemAT/CheA/CheW 複合体の構造解析に成功した。現在、より高分解能での構造決定に向けて、各種実験条件の検討を行っている。また、HemAT 単独でのクライオ電子顕微鏡単粒子解析も合わせて実施するとともに、HemAT センサードメインの結晶構造解析を行った。HemAT センサードメインについては、酸化型、還元型、酸素結合型の結晶構造解析に成功した。現在、それらの構造を詳細に比較検討することにより、酸素センシングに伴うヘム周辺の構造変化とシグナル伝達経路の解析を進めている。

b) 鉄は、全ての生物に必須の微量元素である。しかし、過剰な鉄は細胞毒性を示すため、細胞内の鉄の濃度は厳密に調節する必要がある。生物が最適な鉄濃度を感知するためには、外部環境および細胞内の鉄濃度をセンシングするためのシステムが必要である。本研究では、細胞内鉄濃度の制御に関与する新規な二成分制御系（VgrR-VgrS）を研究対象として、その構造機能相関解明を目的として研究を行なった。本系でレスポンスレギュレータとして機能する VgrR は、VgrS によるリン酸化のみならず、細胞内の鉄イオンによっても機能制御されると推定されている。本研究では、鉄イオンによる VgrR-リン酸化 DNA 複合体形成への影響を確認した。DNA 結合能を有する、リン酸化 VgrR を DNA に結合した後、鉄を加え相互作用解析を行った。鉄の濃度が上昇するにつれて、VgrR-DNA 複合体形成が阻害されることが確認できた。また、ICP 測定の結果、鉄センサーとして機能する VgrS には、Fe(III) が 2 当量結合する
研究活動の現状

ことが分かった。現在、VgrS、VgrRの結晶構造解析のため、結晶化条件の検討を行っている。また、前年度までの研究に引き続き、イネの細胞内鉄イオンセンサーとして機能すると考えられているエピキチンリガーゼHRZによる鉄イオンセンシング機構、および鉄イオンによるHRZの機能制御機構の解明を目的とした研究も進めている。

B-1) 学術論文

B-3) 総説、著書

B-4) 招待講演

青野重利、「ガス分子と生命金属の協奏による生体機能制御」、第一回生命金属科学シンポジウム、東京、2022年5月。

B-7) 学会および社会的活動

その他

総合研究大学院大学理学研究科研究科長 (2022).

豊田理化学研究所審査委員会委員 (2019–2024).

B-10) 競争的資金

科研費新学術領域研究 (研究領域提案型) 「生命金属科学」 (計画研究)、「生命金属動態を鍵反応とするセンサー分子システムの構築と生理機能制御」 青野重利 (2019年度–2023年度)。

科研費研究活動支援事業「酸素ガスをシグナル分子とする生体金属動態解明解析」 青野重利 (2021年度–2022年度)。

自然科学研究機構ExCELLS 若手奨励研究「二成分シグナル伝達系の構造基盤」 東田怜 (2022年度)。

日本科学協会 2022年度笹川科学研究助成、「二成分シグナル伝達系の構造基盤」 東田怜 (2022年度)。

科研費新学術領域研究「生命金属科学」 (総括班)、「生命金属科学」の創成による生体金属動態の統合的研究」(代表: 津本浩平)、青野重利 (研究分担者) (2019年度–2023年度)。
C) 研究活動の課題と展望

生物は、様々な外部環境変化にさらされながら生育するため、外部環境変化に応答して細胞内の恒常性を維持する精緻なシステムを有している。このような外部環境変化に応答した恒常性維持システムには、外部環境の変化を感知するためのセンサータンパク質が必要不可欠である。我々の研究グループでは、遷移金属が関与するセンサータンパク質の構造機能相関解明、および遷移金属の細胞内恒常性維持機構の解明を目指して研究を進めている。今後は、構造生物学的、ならびに生化学・分子生物学的実験手法を活用し、遷移金属含有型センサータンパク質の構造機能相関解明のみならず、これら新規金属タンパク質の生合成反応機構解明に関する研究も進めて行きたいと考えている。
加藤晃一（教授）（2008年4月1日着任）

矢木真穂（准教授（兼任））
谷中矛子（准教授（兼任））
神田智哉（助教）
西栄美子（研究員）
小櫃冴未（研究員）
MOUTAKANNI, Alix (インターンシュップ)
関口太一郎（大学院生）
斎藤泰穂（特別共同利用研究員）
梅澤芙美子（特別共同利用研究員）
西村誠司（特別共同利用研究員）
沈佳娜（特別共同利用研究員）
山本栄（特別共同利用研究員）
磯野裕貴子（特別共同利用研究員）

A-1）専門領域：構造生物学,タンパク質科学,糖鎖生物学,NMR分光学

A-2）研究課題：

a) 生命分子ネットワークが創発する高次機能のメカニズム探査と設計と制御

b) 生命体を構成する多様な分子素子がダイナミックに秩序形成する仕組みの探究

c) 極限環境において生命活動を司る分子集団の構造・動態・機能の解析

A-3）研究活動の概略と主な成果

a) タンパク質の糖鎖修飾機構に関する研究において重要な進展を遂げた。第一に、タンパク質分子の中に組み込まれた糖鎖修飾の制御コードを発見した。自然界に存在する多くのタンパク質は、タンパク質（ポリペプチド鎖）と糖鎖からなる糖タンパク質として存在している。タンパク質の構造は遺伝子の情報を設計図として決定されるが、糖鎖の情報はゲノムが直接コードしているわけではない。我々は、LAMP-1のポリペプチド鎖の中に、ルイスXと呼ばれる特定の糖鎖の修飾を促進する29アミノ酸残基からなる配列を発見した。さらに、この配列をバイオ医薬品として用いられるエリスロポエチンなどの他の糖タンパク質の一端に連結させることで、それらにもルイスX修飾をもたらすことを明らかにした。本研究の成果を活用すれば、バイオ医薬品の糖鎖構造を合理的に制御する知見につながり、次世代バイオ医薬品の開発に資することが期待される。一方、タンパク質の糖鎖修飾は、疾患発症に深く関与している。

我々は以前、マトリグラカンのコア部分にグリセロールリン酸（GroP）が結合し、その伸長を阻害するという新しい翻訳後修飾を発見した。今回、このGroP修飾は、ヒトのCDP-Gro合成酵素であるPCYT2によって担われており、様々ながん組織において発現すること、さらには、大腸がんの悪性度が高まるにつれて、亢進していることを見出した。

GroP修飾が亢進することで、がん細胞の遊走能が高まるなど、GroP修飾ががんの悪性化に関わることも明らかとなった。こうした成果は、GroP修飾を対象としたがんの治療法の開発に資するものと期待できる。さらに、リツキシマブなどの治療抗体の機能に血清タンパク質が与える影響について調査し、ヒト血清アルブミン（HSA）と血清IgG
の Fab 領域が、リツキシマブと Fcγ 受容体 III との相互作用を介した抗体依存性細胞傷害作用を非競合的に阻害することを明らかとした。また、NMR データにより、HSA がリツキシマブの Fab および Fc 領域、および FcγRIII の細胞外領域と相互作用することを示した。本研究の結果は、治療抗体の設計や適用において血清タンパク質との相互作用を考慮することが重要であることを示唆している。

b) 本グループが構築する構造生物学的手法を基軸に、分子研内外の共同研究ネットワークを強化発展し、生命分子の動秩序創発の仕組みを探究した。具体的には、アルツハイマー病の発症に関わるアミロイド β（Aβ）タンパク質について、オリゴマー化の初期過程である二量体化過程を調べた。分子動力学（MD）シミュレーションと in vitro アッセイの結果、Aβ42 の二量体形成には Arg5 側鎖とカルボキシル末端の分子内静電相互作用が重要であることが明らかとなった（安松久士博士との共同研究）。Aβ は神経細胞膜に豊富に存在する脂質質である GM1 ガングリオシドと強固に結合し、アミロイド線維形成を促進することが示されている。固有 NMR 法と MD シミュレーションを用いて、GM1-Aβ 複合体の 3 次元構造解析を実施した結果、二層の逆平行β構造を特徴とする新規な集合体構造であることを見積もった。さらに、この Aβ 集合体自体は GM1 膜上においてアミロイド線維へと変換することはなく、β-Sheet からなる疎水性表面を触媒場として GM1 糖鎖上に誘導することにより、モノマー状態の Aβ のアミロイド線維形成を促進することが明らかとなった（西村勝之博士および安松久士博士との共同研究）。一方、タンパク質のフォールディング過程に関しても NMR 法を用いた解析を展開した。水素/重水素交換 NMR 法により、6M 塩酸グアニシンにより変性したタンパク質に残存する構造情報を捉えるとともに（東京大学 桑島邦博博士との共同研究）、球状の自己組織化錯体の内腔にタンパク質を捕捉することにより、タンパク質のフォールディング・リフォールディング過程におけるヒステリシスの挙動を捉えることができた（東京大学/分子研 藤田誠博士との共同研究）。

c) 極限環境において生命活動を司る分子集団の構造・動態・機能の解析を通じて生命の環境適応の仕組みを理解するとともに、得られた知見に基づいた生物工学的な応用研究を展開することを目指している。2022年度は、トランスクリプトーム解析により、ヨコヅナクマムシにおいて紫外線ストレス後の曝露後に急速に誘導された遺伝子ファミリーを同定した。さらに、同定されたタンパク質の X 線結晶構造解析および生化学実験を実施した結果、本タンパク質が新規のマンガン依存性ペルオキシダーゼであることが判明した。また、これらのタンパク質が主にゴルジ体に存在していることから、乾燥耐性時の酸化ストレスに対処する新しいメカニズムとして、ゴルジ体におけるストレス応答が不可欠であることが示唆された。こうした発見は、水のない過酷な環境に対する生命体の適応戦略の理解につながると考えられる。

B-1) 学術論文

B-3) 総説，著書

加藤晃一，谷中啓子，「抗体のエフェクター活性と定常部を介した抗体の高機能化」，実験医学，40(20), 3253–3258 (2022).
矢木真穂, 加藤晃一, 「“地上最強生物” クマムシの乾眠の分子機構の解明に挑む」, 生化学, 94(6), 888–891 (2022). DOI: 10.14952/SEIKAGAKU.2022.940888

柚木 康弘, 松本 淳, 守島 健, Anne Martel Lionel Porcar, 佐藤信浩, 與語理那, 富永大輝, 矢木真穂, 井上 慶太郎, 河野 秀俊, 矢木真穂, 加藤晃一, 杉山 正明, 「時計タンパク質複合体の構造解析を通して明らかとなった中性子小角散乱の強み」, 日本中性子科学会誌「波紋」, 40, 3253–3258 (2023).

B-4) 招待講演

加藤晃一, 「生命創成探究センター（ExCELLS）」, NMR プラットフォーム シンポジウム 2022, 東京, 2022 年 11月。

加藤晃一, 「生命分子動秩序創発研究と極限環境生命分子研究の 2022 年の進展」, 第5回 ExCELLS シンポジウム, 岡崎, 2022 年 12 月。

K. KATO, 「From Antibody NMR to Integrative Glycoscience」, 20th IPR Retreat, 大阪, 2022 年 12 月。

加藤晃一, 谷中 冴子, 「抗体の高次構造と相互作用のダイナミクス」, 第1回日本抗体学会設立記念学術大会, 鹿児島, 2022 年 11 月。

加藤晃一, 「生命分子動秩序創発研究と極限環境生命分子研究の最近の進展」, ExCELLS カルティディペロップメント, 岡崎, 2023 年 2 月。

矢木真穂, 「アミロイド β の構造変化とアッセンブリー」, 日本生物物理学会次世代 NMR ワーキンググループ金曜 Spin-off 会, 2022 年 7 月。

矢木真穂, 「微小重力環境下におけるアミロイド線維形成」, 日本マイクログラビティ応用学会第 34 回学術講演会 (JASMAC-34), 2022 年 9 月。

S. YANAKA and K. KATO, “Integrative approach for the observation of conformational dynamics and interactions of antibodies,” The 7th International Symposium on Drug Discovery and Design by NMR, Yokohama, October 2022.

B-7) 学会および社会的活動

学協会役員等

日本バイオイメージング学会評議員 (1995–) 、理事 (2012–) 、副会長 (2021–)。

日本生化学会評議員 (2002–)。

日本糖質学会評議員 (2003–) 、理事 (2013–)。

日本核磁気共鳴学会幹事 (2020–) 、評議員 (2022–)。

日本蛋白質科学会理事 (2015–)。

日本糖鎖科学コンソーシアム幹事 (2012–) 、常任幹事 (2016–)。

日本生物物理学会代議員 (2021–2023)。（谷中啓子）

日本蛋白質科学会アーカイブ編集委員 (2017–)。（矢木真穂）

日本生物物理学会代議員 (2023–2025)。（矢木真穂）

学会の組織委員等

ISMAR-APNMR-NMRSJ-SEST2021 合同会議実行委員会委員、募金委員会委員長 (2019–)。

Universal Scientific Education and Research Network (USERN), Advisory board member (2021–)。

文部科学省、学術振興会、大学共同利用機関等の委員等

大阪大学蛋白質研究所専門委員会委員 (2014–)。

大阪大学蛋白質研究所「共同利用・共同研究」委員会超高磁場 NMR 共同利用・共同研究専門部会会員 (2012–2024)。

日本学術会議連携会員 (2017–2023)。

日本学術振興会先端科学 (FoS) シンポジウム事業委員会委員 (2018–2024)。

学会誌編集委員

Open Glycoscience, Editorial board member (2008–)。

Glycoconjugate Journal, Editorial board member (2009–)。

World Journal of Biological Chemistry, Editorial board member (2010–)。

Glycobiology, Editorial board member (2011–)。

Scientific Reports, Editorial board member (2015–)。

International Journal of Molecular Sciences, Editorial board member (2017–)。

理科教育活動

理科年表物理／化学部監修者 (2022)。

B-8) 大学等での講義、客員

名古屋市立大学薬学部、大学院薬学研究科、特任教授、2008年４月–。

名古屋市立大学薬学部、講義「構造生物学」「薬学物理化学Ⅱ」「生命薬科学研究入門」「一般教養科目 創薬と生命」「創薬科学・知的財産活用論」「物理系実習Ⅱ」、2015年–。
B-10) 競争的資金

科研費基盤研究(A),「先端計測アプローチの統合による抗体の構造動態と機能発現の連関機構の解明」, 加藤晃一 (2019年度–2022年度)。

科学技术振興機構CREST研究,「ゴルジ体の動態解明に基づく糖鎖修飾の制御」, 加藤晃一 (2021年度–2025年度)。

日本学術振興会学術国際交流事業二国間交流事業,「ヌクレオソームダイナミクスに関わるATPaseの動的構造解析」,加藤晃一 (2021年度–2022年度)。

科研費基盤研究(B),「抗体医薬の高機能化に向けた抗体の分子経絡の解読と改変」, 谷中冴子 (2022年度–2025年度)。

AMED次世代治療・診断実現のための創薬基盤技術開発事業,「国際競争力のある次世代抗体医薬品製造技術開発／革新的な次世代抗体医薬品製造技術の開発（分子中に秘められた新規相互作用部位の探査と変更を通じた次世代抗体創成の基盤構築）」(代表: 谷中冴子), 加藤晃一(研究分担者) (2021年度–2025年度)。

科研費基盤研究(C),「スピン脱塩カラムと二次元NMRによる変性蛋白質残存構造の解析」 (代表: 桑島邦博), 加藤晃一 (研究分担者) (2020年度–2023年度)。

AMED次世代治療・診断実現のための創薬基盤技術開発事業,「国際競争力のある次世代抗体医薬品製造技術開発／次世代抗体医薬品の実用化に向けた物性・品質評価及び管理手法に関する技術的研究（次世代抗体医薬品の実用化に向けた品質評価及び管理手法に関する技術的研究）」(代表: 石井明子), 加藤晃一 (研究分担者) (2021年度–2025年度)。

科研費特別推進研究,「空間捕捉によるタンパク質の構造・機能制御および高効率構造解析」 (代表: 藤田誠), 矢木真穂 (研究分担者) (2019年度–2023年度)。

C) 研究活動の課題と展望

これまでの成果をさらに発展させ、複雑な生命分子システムを舞台とする分子科学を開拓する。すなわち、生命分子システムにおける各構成要素のダイナミクスと振る舞いを「みる」アプローチ法を発展させるとともに、得られたデータを情報科学的に「読む」ためのアプローチ法を開発する。さらに、階層横断的な機能解析を実施し、外部環境の変動の中で秩序創発していくロバストな生命の本質を統合的に理解することを目指す。生命体を構成する多様な分子素子がダイナミクスに秩序創発する仕組みを理解するためには、生命分子を取り巻く不均一かつ複雑な環境因子の影響を考慮することが必要である。微小重力環境下において形成したアミロイド線維の構造解析を展開するとともに、極限環境において生命活動を司る分子集団の構造・機能・機能の解析を通じて生命の環境適応の機構を理解することを目指した研究を展開する。さらに、第3の生命鎖とよばれる糖鎖の構造・機能・形成に関する統合的な研究を推進する。
A-1) 専門領域：生物物理学，分子マシーン，分子機械，1分子計測，タンパク質工学

A-2) 研究課題：
 a) 回転分子モーター V-ATPase のエネルギー変換機構の解明，機能創成，特性解析
 b) リニア分子モーターキネシンの変換・ハイブリッド化による運動制御と特性解析
 c) 人工DNAナノ粒子モーターの高速化，運動制御と特性解析

A-3) 研究活動の概要と主な成果
 a) V-ATPase (V_{1}V_{0}) は，ATP の化学エネルギーを利用して細胞膜を介するイオンの能動輸送を行う分子ポンプであり，ATP加水分解反応を触媒する V_{1} とイオン輸送を担う V_{0} の 2つの回転分子モーターの複合体である。我々が研究対象としている腸球菌由来 V_{1}V_{0} (EhV_{1}V_{0}) はナトリウムイオン (Na^{+}) を輸送する。我々は，EhV_{1}V_{0} のイオン結合部位を改変することで，イオン選択性を Na^{+} からプロトン (H^{+}) に変えることに成功した。
 b) 2本足で歩く分子モーターキネシン−1 は，後足が前足を常に追い越すいわゆるハンドオーバーハンド機構で，レールである微小管上を直進運動する。微小管上にはキネシン結合部位が前後左右に多数存在するにも関わらず，後足が前足を追い越して常に前方に結合する機構は不明である。我々は，人工分子ポリエチレングリコール (PEG) でキネシンの2つの足を繋いだ生体-人工ハイブリッドキネシンを創成し，高速高精度1分子計測でその運動過程を解析した。その結果，柔らかいPEGリンカーで繋いだ場合でも，天然型と同様のハンドオーバーハンド機構で正確に直進運動し，2つの足を繋ぐリンカーの剛直性は不要であることを明らかにした（論文準備中）。
 c) タンパク質分子モーターに触発されて開発された DNA 人工分子モーターは設計の自由度が高く，DNA の塩基配列や長さを変えることで足場との結合の親和性や選択性を制御できる。しかし，先行研究で報告されている DNA 人工分子モーターの運動速度は数 nm/s 程度であり，10–1000 nm/s で動くタンパク質分子モーターに比べて大きく劣る。我々は，DNA 修飾金ナノ粒子，RNA 修飾足場，DNA 依存的 RNA 分解酵素で構成される DNA ナノ粒子モーターの律速過程を1粒子追跡とシミュレーションで特定・改善し，タンパク質分子モーターに匹敵する数 10 nm/s の運動速度を達成した。
研究活動の現状

B-1) 学術論文

B-3) 総説、著書

B-4) 招待講演
飯野亮太, 「リニア分子モーターキネシン1のエンジニアリング」, 第22回日本蛋白質科学会年会ワークショップ「発動分子エンジニアリング: タンパク質分子機械をいじり倒して実現する新機能」, つくば, 2022年6月.
飯野亮太, 「結晶性高分子分解酵素の反応サイクルの1分子イメージング解析」, 第19回糖鎖科学コンソーシアムシンポジウム, 岐阜, 2022年11月.
飯野亮太, 「分子モーターの動きをみる, 動きをつくる」, 名古屋大学理学研究科講演会, 名古屋, 2022年11月.
飯野亮太, 「分子モーターの動きをみる, 動きをつくる」, 第36回分子シミュレーション討論会, 東京, 2022年12月.
飯野亮太, 「生体・人工ハイブリッド分子モーターの創出と特性解析」, 分子研究会「生体分子材料を探る: 発動分子のさらなる理解と設計に向けて」, 岡崎, 2023年3月.
大友章裕, 「1分子計測と共鳴ラマン分光法を用いた細胞膜で働くタンパク質のダイナミクス研究」, 光科学若手研究会, オンライン開催, 2022年6月.
大友章裕, 「1分子計測・活性測定・タンパク質工学による回転型V-ATPaseの統合的研究」, 第60回日本生物物理学会年会, 函館市, 2022年9月.
大友章裕, 「1分子散乱イメージングによる回転分子モータータンパク質の構造ダイナミクス研究」, 物性研究所機能材料セミナー, 東京, 2023年2月.

B-5) 特許出願

特願2021-168388, 「タンパク質、ポリヌクレオチド、組換えベクター、形質転換体、ポリエチレングリコール分 解用組成物、及びリサイクル品の製造方法」, 中村彰彦, 飯野亮太 (自然科学研究機構), 2021年.

B-7) 学会および社会的活動
学協会役員等
日本生物物理学会理事 (2019.6–2023.6).
学会誌編集委員

B-8) 大学等での講義、客員
静岡大学大学院総合科学研究科, 非常勤講師, 「応用生命科学特別講義」, 2022年9月.
名古屋大学大学院理学研究科, 非常勤講師, 「分子物理学特別講義」, 2022年4月–2023年3月.
総合研究大学院大学物理科学研究科, 「機能生体分子科学」, 2022年4月.

B-10) 競争的資金
科研費基盤研究 (B), 「バクテリアペニ毛モーター固定子複合体の「回転モデル」を1分子計測で実証する」, 飯野亮太 (2021年度–2023年度).
科研費新学術領域研究「発動分子科学」 (計画研究), 「生体・人工発動分子によるエネルギー変換過程の1分子計測法の開発」, 飯野亮太 (2018年度–2022年度).
科研費若手研究, 「1分子計測法で明らかにするV-ATPaseの機能と構造の相関」, 大友章裕 (2021年度–2023年度).
自然科学研究機構若手研究者による分野間連携研究プロジェクト, 「ボトムアップアプローチによる分子モータータンパク質の機能改変」, 大友章裕 (2022年度).
自然科学研究機構分野融合型共同研究事業, 「ハイブリッド微小管の創製・配列・制御」 (代表: 内橋貴之), 飯野亮太 (研究分担者) (2022年度).
新分野創成センター先端光科学研究分野共同研究プロジェクト、「超局在赤外近接場分光による単一タンパク質内の振動分光」（代表：西田 純）、大友章裕（研究分担者）（2022年度）。

B-11）産学連携

共同研究、キリンホールディングス（株）、「PET分解酵素の開発」、飯野亮太（2022年）。

C）研究活動の課題と展望

生体分子モーター等のナノサイズの生体分子機械は、人間が作ったマクロなサイズの機械と比べてはるかに小さく、ブラウン運動の活用等、全く異なる作動原理で働く。今後も引き続き、天然の分子モーターを1分子計測して機構を調べるだけでなく、天然に存在しない分子モーターを積極的につくることで、その作動原理と設計原理をさらに深く理解し、機能向上や制御に繋げる。例えば、1回転で2倍のイオンを輸送するV-ATPaseをつくることで、ATP加水分解モーターV₁とイオン輸送モーターV₀のエネルギー変換の共役機構の理解を深めるだけでなく、イオン輸送速度や電気化学ポテンシャル形成能を制御する。また、創成した非天然型キネシンに我々が以前に開発した高速高精度マルチカラー1分子計測を適用し、2本の足の動きを同時に可視化してその歩行運動の機構をさらに深く理解するだけでなく、運動方向や速度の制御に繋げる。さらに、ヘテロな塩基配列を有するDNAナノ粒子モーターを二量体化して外部からのDNA添加で運動方向の制御を可能にし、センサー機能とアクチュエーター機能を兼ね備えた高速高制御人工分子モーターを創成する。
研究活動の現状

A-1) 専門領域：有機合成化学、有機金属化学

A-2) 研究課題：
 a) 不均一反応メディア中での触媒反応システムの構築
 b) 光触媒を利用した分子変換反応の開発
 c) 新しい遷移金属錯体触媒・ナノ構造触媒の創製

A-3) 研究活動の概略と主な成果
 a) パラジウム、ロジウム、銅錯体触媒などを両親媒性高分子に固定化するとともに機能修飾することで、これら遷移金属錯体触媒有機変換反応の多くを完全水系メディア中で実施することに成功した。水中不均一での高立体選択的触媒反応の開発を世界にさきがけて成功した。
 b) 新しいピンサー錯体の合成方法論を確立し、それらピンサー錯体分子が自発的に集積することで形成する分子集合体の三次元構造構築に立脚した新しい触媒機能システムの開発に注力しつつある。
 c) 水中での反応加速、連続フローシステムに依る効率化、ピンサー錯体触媒化学における新しい反応形式などに立脚して各種反応の ppm-ppb 視野付近を進めつつある。
 d) 超高触媒活性を示す高分子触媒の発生・発現を観察し、その構造評価および有機分子変換触媒としての適用一般性を確立しつつある。
 e) 遷移金属錯体を用いた光触媒反応による新しいカルボニル化合物の活性化と、それに立脚した分子変換反応の開発を遂行しつつある。特に光触媒によるカルボニル化合物変換触媒の活性を上げつつある。

B-1) 学術論文

B-7) 学会および社会的活動

学協会役員等
有機合成化学協会支部幹事 (1998–).

学会の組織委員等
名古屋メダル実行委員 (2000–).
有機金属討論会組織委員 (2012–).

文部科学省、学術振興会、大学共同利用機関等の委員等
京都大学ゼロエミッション研究拠点運営委員 (2022–).

学会誌編集委員
SYNLETT誌アジア地区編集主幹 (2002–).
SYNFACTS誌編集委員 (2005–).
SYNFACTS誌編集委員 (2020–). (奥村慎太郎)

B-8) 大学等での講義、客員
九州工業大学、客員教員, 2022年4月–2023年3月.

B-10) 競争的資金
科研費挑戦的研究（萌芽）, 「カルボニル化合物を求核剤とした分子変換反応の開拓」, 魚住泰広 (2021年度–2023年度).
科研費若手研究, 「カルボニル化合物の二電子還元による極性転換とカルボニルへの付加反応の開発」, 奥村慎太郎 (2021年度–2023年度).
有機合成化学協会第34回富士フイルム研究企画賞研究助成, 「ジカルボニル化合物の二電子還元による活性化を利用したカルボニル化合物の光触媒的極性転換」, 奥村慎太郎 (2022年度–2023年度).

C) 研究活動の課題と展望
素減量・元素代替に焦点を当てた「元素戦略CREST研究(2011年10月−2017年3月)を展開してきた。さらに2014年12月からACCEL研究(2014年−2020年)に採択され「超活性固定化触媒開発を立脚した基幹化学プロセスの徹底効率化」研究を進めつつある。また自己集積錯体触媒研究は2007年以降、理化学研究所フロンティア研究に指名され、現在同研究所・環境資源科学研究センターにて展開した(2007年−2019年)。現在、魚住の本拠地である分子科学研究所にて、次の研究の萌芽を見いだし育てる研究にも大いに注力しており、幾つかの新機軸候補課題の中から大きな発展に繋がる新課題を見いだしつつある。なかでも最近は未開拓元素群の触媒反応性（とくにCu, Fe, Ag）の探索と確立、さらには分子の自己集積化に立脚した触媒機能の自発的獲得などを目指した研究開発を進めつつある。また分子研内外の研究者とチームで取り組み遷移金属触媒カップリング反応の極端紫外光分光を利用したオペラント観察による反応機構解析、企業との産学連携による基幹的有機化合物の工業生産プロセスへの展開研究などの共同研究に取り組みつつある。さらに、基礎研究として、これまでの高活性触媒の設計概念と駆動原理を駆使し、従来パーセント量の利用が常識であった化学変換触媒をppm−ppb量のレベルへと転換すべく研究に取り組んでいる。これは触媒活性の10^4−10^7向上を意味し「改善」を凌駕する「飛躍」が要求される圧倒的な高活性化であり、学術的にも大きなチャレンジである。また特にグループ内での奥村博士との協働による遷移金属錯体光触媒の開発を推進し、従来がないカルビノール基の極性転換反応を開発・展開しつつある。本課題は今後の魚住グループの大きな潮流となる。
研究活動の現状

大塚 尚哉（助教）
MOHD ARIS, Muhammad Zhafran Bin（インターンシップ）
堀 達暁（大学院生）
大石 磯也（大学院生）
加藤 雅之（大学院生）
西岡 雪奈（技術支援員（派遣））
原田 晋子（技術支援員（派遣））
柿沼 秀哉（技術支援員（派遣））
丸山 莉央（技術支援員（派遣））
牛田 妃菜乃（事務支援員（派遣））

A-1) 専門領域：有機合成化学

A-2) 研究課題:

a) キラルなプロトンを開始剤とする触媒的不斉連鎖反応の開発
b) ベルフルオロハロゲン化ベンゼンを基盤とする触媒機能の体系化
c) ハロゲン結合を活用する高分子触媒反応場の開発
d) 三中心四電子ハロゲン結合を活用するハロニウム錯体触媒の開発
e) 全フッ素ハロゲン化リレン化合物の精密合成と多機能性材料への応用
f) 全データ駆動型反応開発システムの構築

A-3) 研究活動の概略と主な成果

a) 触媒量のキラルブレンステッド酸を開始剤として用い、触媒的不斉連鎖反応に成功した。エナンチオ選択性の発現機能を計算化学的に検証するため、鈴木敏泰チームリーダーと共同研究を実施した。その結果、本触媒反応におけるエナンチオ選択性が、キラルブレンステッド酸触媒の非共有結合性相互作用により制御されていることが見出した。本研究は、キラルな有機アニオンによる選択性制御機構の詳細に言及する世界初の例となる。さらに、得られた生成物をβ-アミノ酸誘導体へと変換して、本触媒反応の有用性を示した。これらの研究成果を学術論文としてまとめ学術誌に発表した。

b) 種々のベルフルオロヨードベンゼンが、ビルジンとアリルシラトランとのアルカリ化反応、クロチル化反応、プレニル化反応の触媒として機能することを見出した。江原グループとの共同研究、岡山大自然生命科学研究支援センターでのHOESY測定により、本反応の触媒作用機構を明らかにした。触媒活性中心の立体的影響ならびに電子的影響を詳細に調査し、鈴木敏泰チームリーダーとの共同研究により、反応の駆動力と推測される分子間の静電相互作用を計算化学的に示すことに成功した。現在、ベルフルオロハロゲン化ベンゼンを基盤とする触媒機能の体系化を試みている。本年度内に掲載決定に向け、追加実験をもとに論文の改訂と実験項の作成を進めている。

c) ハロゲン結合供与部位を有する高分子とDMAPから調製した高分子触媒が、水中でのアシル基転移反応に有効であることを見出した。産総研触媒化学融合研究センター中島チーム長および田中主任研究員と共同研究を実施し、固体DNP-NMR測定により高分子触媒中のDMAPとそのハロゲン結合供与能を検証した。光化学的に触媒活性中心
となる DMAP を同定することに初めて成功した。共同研究の成果について、現在、論文執筆中である。さらに、反応操作を見直すことにより、本触媒反応システムは、ppm レベルの触媒反応へと展開することに成功した。岐阜医療科学大学の薬代准教授と共同研究において ppm レベルでの不斉触媒化に挑戦し、開発した不斉高分子触媒がエナンチオ選択性の発現に有効であることを明らかにした。本年度中の論文発表を目指し、現在、論文執筆中である。

d) エチニルビスピリジンを配位子とするヨードニウム錯体やジアリールヨードニウムトリヨージドの合成と構造解析に成功した。合成した錯体が、向山型反応や細見-桜井反応において、極めて高い触媒活性を示すことを見出した。NMR や CSI-MS 測定により本錯体触媒の反応触媒力を実験化学的に検証した。開発したヨードニウム錯体触媒反応では、触媒の一つヨウ素と反応基質の電子豊富な化学種との三電子ハロゲン結合の形成が反応型動力を与えていていることを見出した。向山型反応については、追加実験および追加計算、論文改訂作業として行っている。

e) 全フッ素ハロゲン化ベンゼンでは達成できない新規機能の探究を目的として、全フッ素ハロゲン化ペリレン化合物の精密合成を実施した。構成素子となる部分フッ素化ナフタレンの位置選択的フッ素化反応を確立し、メタ位をヨウ素、臭素、塩素で置換した全フッ素ハロゲン化ペリレンの合成に成功した。全フッ素ハロゲン化ペリレンおよびその誘導体が、市販の全フッ素ハロゲン化ベンゼンとは異なる分子配列を形成し、ハロゲン元素の違いに伴う発光特性を有することを見出した。現在、合成と構造に関する論文を執筆中である。また、全フッ素ハロゲン化ペリレン化合物の合成にあたり、その最小骨格である F7 ナフタレンへのハロゲン化反応の開発を行った。安定で取り扱いが容易な Mg(TMPS)2·2LiBr が本反応の脱プロトン化に有効であることを見出した。市販で入手可能なハロゲン化剤を用いることで、ヨウ素化、臭素化、塩素化、F7 ナフタレンに対する全てのハロゲン化に成功した。本成果についても、論文執筆中である。

f) 化学反応の開発は、新規有機分子の精密合成を実現するうえで重要な鍵となる。合成研究から機能創成研究への展開を目的として、これまで取り組んできた新規有機分子の合成と機能開創に、情報科学手法を活用する開発システムの構築を進めている。静岡大学山根教授、山手機器センター鈴木敏 Asking Team Leader と共同研究を実施し、全フッ素ハロゲン化ペリレン化合物の合成に、機械学習と量子化学計算の融合による反応開発を行った。その結果、定量的な解析にもとづく反応条件の最適化が可能になり、反応収率の飛躍的な向上に成功した。また、有機低分子の反応性の理解と定量化を進めるため、機械学習モデルの開発に成功した。アプリケーションとしての実用に向けて、マテリアルインフォマティクス企業との共同研究に着手した。現在、触媒化学空間を可視化しながら、触媒反応開発を進めている。

B-1) 学術論文

B-3) 総説, 著書
椴山儀恵, 「三中心ハロゲン結合を基盤とする分子性触媒の創成」, 日本薬学会「ファルマシア」, 58(10), 948 (2022).

B-4) 招待講演
椴山儀恵, 「Challenge toward Halogen Bond-Driven Molecular Catalysis」, 令和4年度化学系学協会東北大有機化学コロキウム, 順岡市, 2022年9月.
椴山儀恵, 「ハロゲン結合の触媒科学——触媒反応空間の構築に向けて——」, 第8回電子状態理論シンポジウム, 東京, 2022年11月.
椴山儀恵, 「精密合成のデジタル化——反応性の規格化に向けて——」, 日本プロセス化学会ウィンターシンポジウム, 京都市, 2022年12月.
椴山儀恵, 「有機合成のデジタル化——これまでの有機合成・これからの有機合成——」, 第5回発動分子科学サロン「発動分子とAI」, 横浜市, 2023年2月.

B-7) 学会および社会的活動
学協会役員等
学会の組織委員等
日本プロセス化学会東海地区フォーラム幹事 (2021–).
文部科学省, 学術振興会, 大学共同利用機関等の委員等
日本学術振興会科学研究費委員会専門委員 (2022).

B-10) 競争的資金
科研費学術変革領域研究(A)（計画研究）, 「精密合成を迅速に実現する全データ駆動型反応開発システムの構築」, 植山儀恵 (2021年度–2025年度).
科研費学術変革領域研究(A), 「デジタル化による高度精密有機合成の新展開」総括班 (代表: 大嶋孝志), 植山儀恵 (研究支援) (2021年度–2025年度).

C) 研究活動の課題と展望
当グループでは, 精密合成化学を基盤として, 有機機能性分子の設計・合成・機能化を進めている。これまでに, 種々の新規ハロゲン分子の精密合成に取り組み, これらの分子が, 触媒分子として機能することを見出してきた。特に, 所内外の研究グループと共同研究を実施することで, ハロゲン原子を起点とする様々な分子間相互作用を詳細に考
察し、これらの分子間相互作用が開発した触媒の機能発現に重要な役割を果たしていることを実証している。2021年度後期から2022年度前期にかけて、投稿論文の審査コメントをもとに追加実験を実施し、論文3報が学術誌に掲載された。また、2022年度後期は、所内外研究者との共同研究成果がまとまり、学術誌2報に掲載された。その内1報は、プレスリリースを行った。引き続き、修正および追加実験を依頼されている論文2報の改訂作業を行い、2023年度中の論文掲載を目指す。また、8報の論文を執筆中であり、2023年度はこれらの論文投稿に注力する。従来法による反応および触媒の開発に加え、インフォマティクスを活用した次世代精密有機合成システムの構築に尽力し、有機ハロゲン分子の精密合成から機能創成への研究展開を加速する。

今後は、有機合成のデジタル化を推進しながら、新たな分子性触媒・分子変換反応を開発する。さらに、機能性有機分子材料の開発へと研究を展開することで、精密合成情報科学の学理構築を目指す。近い将来、本研究の成果が、新機能性物質創成の有力な手段として汎用されることを目標に、引き続き研究を遂行する。
錯体物性研究部門

草 本 哲 郎（准教授）（2019年1月1日〜2023年3月31日）*1

松岡 亮太（助教）
水野 麻人（学振特別研究員）
壬生 託人（特任専門員）
久保田亜紀子（技術支援員）
中貝 楓（技術支援員（派遣））
川口 律子（事務支援員）

A-1) 専門領域: 分子物性化学, 錯体化学

A-2) 研究課題:
a) ラジカルの多重項に基づくスピン-発光相関機能の創出とメカニズム解明
b) 三回対称構造を有するラジカルに基づく物質開拓
c) ラジカル結晶における固体発光機能の探究

A-3) 研究活動の概略と主な成果
a) 光安定ラジカル PyBTM を10wt% ドープした分子結晶は、極低温において磁場に応答する発光挙動（magnetoluminescence）を示す。その背景には、ラジカルの集積化により新たに生まれるスピン自由度が本質的な役割を果たしている可能性がある。本研究では、magnetoluminescence のメカニズムの理解、中でもラジカルであることが本現象に対しどのように影響しているのか、を理解することを目的として、PyBTM を様々な濃度でドープした分子結晶に対し、発光スペクトルに加え発光寿命の磁場および温度依存性を詳細に調べた。この結果を速度方程式ならびに量子力学的シミュレーションを基に解析した結果、基底状態におけるスピン状態分布の変化（静的磁場効果）と励起状態における磁場誘起項間交差（動的磁場効果）のうち、前者の寄与が magnetoluminescence 機動に対し支配的であることを見出した。これは、本現象が通常の閉殻分子では実現が困難であり、開殻電子系であるラジカルならではの新奇性であることを意味している。これと並行して、PyBTM が配位した亜鉛錯体を合成し、この物質が magnetoluminescence を示す初めてのラジカル金属錯体であることを明らかにした。また励起状態におけるラジカルエキシマー形成が分子内ではなく分子間で生じることを見出した。

b) 二次元系物質は、構造の低次元性や特徴的なバンド構造トポロジーに由来する機能を示す。我々はなかでも二次元ハニカム構造を有する開殻錯体高分子を着目し、新規物質開発及び機能創出を進めている。本研究では、目的物質の構成要素となる三回対称構造を有するラジカルを新たに開発した。さらにラジカルと金属イオンとの配位結合形成により狙い通りの二次元ハニカム構造が形成できることを見出した。特に磁気モーメントを有する銅イオンを用いた場合、銅イオンとラジカルの不対電子間に強磁性的な交換相互作用が働くこと、また物質の磁気秩序状態が磁場に応答して変化する（反強磁性秩序〜強磁性秩序）ことを見出した。これは同様の分子構造を有する零次元系および一次元系物質では見られなかった新しい機能である。

c) 開殻分子の固体発光は、開殻分子のそれとは特徴やメカニズムが異なることが予想できるが、発光性の開殻分子結晶の例が極めて少なく、研究が十分には進められてこなかった。我々は室温において固体発光するラジカル分子結晶
品を世界に先駆けて開発した。加えて、この分子結晶が近赤外領域で発光することを明らかにした。この物質は開殻分子凝縮系の励起状態ダイナミクスや発光メカニズムの基礎学理の解明を可能とする有力物質である。

B-1) 学術論文

B-3) 総説, 著書

B-4) 招待講演

草本哲郎,「安定有機ラジカルを基とするスピン相関発光機能の創出」, 第6回高密度共役若手会セミナー, オンライン開催, 2022年8月。

草本哲郎,「不対電子を有する分子性物質が示す磁気・電気・光機能」, ISSP ワークショップ「1000 テスラ超強磁場科学の開拓」, オンライン開催, 2022年6月。

草本哲郎,「安定有機ラジカルが示すスピン相関発光機能」, 第53回中部化学関係学協会支部連合秋季大会, オンライン開催, 2022年11月。

T. KUSAMOTO, “An open-shell, magnetoluminescent, two-dimensional coordination polymer with a triangular organic radical ligand,” the 8th Asian Conference on Coordination Chemistry (ACCC8), Taipei (Taiwan), August 2022.

研究活動の現状

C) 研究活動の課題と展望

有機ラジカルや磁性金属錯体に代表される開殻電子系分子は、不対電子に基づき、通常の閉殻分子とも無機物質とも異なる物性を発現する。我々の研究グループでは、開殻電子系分子を用いてユニークな光・電気・磁気相関物性を創製・解明することで、物性科学に新概念と革新をもたらすことを目指して研究を進めている。今年度は、(a) スピン-発光相関機能のメカニズムの解明、(b) 二次元ハニカム構造を有する開殻錯体高分子の合成と磁気特性の調査、(c) 室温で近赤外発光を示す新しいラジカル分子結晶の開発、の研究を推進し、それぞれにおいて重要な成果を得ることができた。今後は、(a) では、低温・磁場下における発光測定が可能な測定系を用いて、これまで開発してきた発光開殻分子のmagnetoluminescenceにおける普遍性と非普遍性、ならびに分子特有のパラメータを明らかにし、メカニズムの全容解明に繋げる。(b) および(c)については、有機化合物の高い分子設計性や金属錯体の特長である金属イオン及び幾何構造の多様性を基に、新しいラジカル金属錯体を開発し、これまでにない光相関機能あるいは励起状態特性の創出を目指す。

＊）2023年4月1日大阪大学大学院基礎工学研究科教授
瀬川泰知（准教授）（2020年4月1日着任）

杉山晴紀（助教）
長瀬真依（大学院生）
廣田宗士（大学院生）
渡邉幸佑（大学院生）
吉田瑠（大学院生）
中野さち子（技術支援員（派遣））
平田直（技術支援員（派遣））
谷分麻由子（事務支援員）

A-1) 専門領域：有機合成化学，構造有機化学

A-2) 研究課題:
 a) 3次元幾何構造をもつ機能性有機構造体の合成と機能
 b) 解明複雑な幾何構造をもつトポロジカル分子群の創製
 c) 電子回折結晶構造解析の有機機能性材料開発への活用

A-3) 研究活動の概略と主な成果
 a) 湾曲構造をもったπ共役有機分子の合成と構造解析を行った。大環状にπ共役がつながった分子「シクロパラフェニレン」について，初の全置換体である「パーフルオロシクロパラフェニレン」の合成・構造・光物性研究についての論文を発表した。また，全てのベンゼン環にフッ素が2つずつ置換した「ハーフフルオロシクロパラフェニレン」の合成についてのプレプリントを発表した。
 b) メビウスの輪のトポロジーをもつ分子の合成と性質解明研究について論文を発表した。またベルト状に共役した含窒素芳香族分子の合成および酸化反応挙動を解明し，論文を発表した。
 c) 京都大学化学研究所宮内雄平教授らとの共同研究により，トポロジカル半金属Co3Sn2S2の偏光ラマンスペクトルによる簡便な構造解析手法の開発を行い論文として発表した。
 d) 3次元共有結合構造体のユニット合成において，特徴的な構造をもつπ共役化合物が得られたため，総研大アジア冬の学校にて2件のポスター発表を行った。

B-1) 学術論文

B-3) 総説、著書

B-4) 招待講演

瀬川泰知, 「トポロジカルπ共役分子の合成と展開」, 有機化学研究会(白鷺セミナー), オンライン開催, 2022年5月.

瀬川泰知, 「Synthesis of topologically unique molecular nanocarbons」, 第63回フラーレン・ナノチューブ・グラフェン総合シンポジウム, 東京, 2022年8月.

B-6) 受賞、表彰

瀬川泰知, 宇部興産学術振興財団第62回学術奨励賞 (2022).

B-7) 学会および社会的活動

理科教育活動

三重県立伊勢高等学校スーパーサイエンスハイスクール事業における講義研究に係る指導・助言 (2022).

出前授業「金属から『電子』を取り出してみよう！」岡崎市立三島小学校 (2022).

広報誌OKAZAKI 第71号「出前授業：金属から『電子』を取り出してみよう！」, 2023年2月.

その他

教育系Youtube チャンネル「予備校のノリで学ぶ大学の数学・物理」にて紹介された (2023).

東京大学新聞 2023年3月10日号にインタビュー記事掲載 (2023).

現代化学 (東京化学同人)2023年3月号にインタビュー記事掲載 (2023).

B-8) 大学等での講義、客員

大阪公立大学大学院農学研究科, 講師, 2022年5月.

総合研究大学院大学物理科学研究科, 「基礎錯体化学」, 2022年4月–9月.

250 研究活動の現状
研究活動の現状

B-10) 競争的資金

科研費基盤研究(B)、「トポロジカルπ共役構造体の創製」瀬川泰知(2022年度–2024年度)。
科学技術振興機構創発的研究支援事業(受託研究)、「革新的有機半導体を指向した周期的3次元π共役構造体の創製」瀬川泰知(2022年度)。
科研費挑戦的研究(萌芽)、「有機半導体の配向配列問題を解決する3次元πスタック分子の創製」瀬川泰知(2022年度–2023年度)。
宇部興産学術振興財団第62回学術奨励賞研究助成、「3次元トポロジカル構造制御を鍵とした結晶性有機半導体材料の開発」瀬川泰知(2022年度)。
三菱財団自然科学研究助成、「等方的キャリア輸送を実現するユニバーサル有機半導体材料の開発」瀬川泰知(2021年度–2022年度)。
旭硝子財団研究助成、「数小結晶の構造解析を基軸とする3次元有機共有結合ネットワークの開発」瀬川泰知(2021年度–2022年度)。
科研費若手研究、「アニュオン性有機共有結合フレームワークの3次元精密構築と機能化」杉山晴紀(2022年度–2023年度)。
中部科学技術センター学術・みらい助成、「水素結合を利用したカゴ型有機分子の自己集積制御：バイポーラスな有機多孔質結晶の合成」杉山晴紀(2021年度–2022年度)。

C) 研究活動の課題と展望

本年度は3次元的な分子設計による特異なトポロジーをもった有機構造体の創製に向けて研究を行った。パーフュロオロシクロパラフェニレンやハーフフルオロシクロパラフェニレンの合成、含窒素ベルト状芳香族化合物の合成、特異なトポロジーをもつ芳香族炭化水素メビウスカーボンナノベルトの合成を発表した。また京都大学化学研究所宮内雄平教授らとの共同研究により、トポロジカル半金属Co3Sn2S2の偏光ラマンスペクトルによる簡便な構造解析手法の開発を行い論文として発表した。
今後は複雑なトポロジーをもつ有機分子や3次元ネットワーク高分子の合成および機能開拓を行い、既存の有機合成の限界を突破した物質創製研究を遂行していく。すでに3件の国内学会での発表を行っており、本研究グループにおいて新たにスタートした研究成果が出つつある。これらを迅速に論文発表するとともに、分子科学研究所の共同利用施設としての利用促進を併せて進めていく。
6-8 特別研究部門

藤田 誠（卓越教授）（2018年4月1日着任）

三橋 隆章（特任助教（分子科学研究所特別研究員））
CHEN, Jiazhuo（研究員）
増田 道子（事務支援員）

A-1）専門領域：錯体化学、有機化学、超分子化学

A-2）研究課題：
 a) 結晶スポンジ法の二次代謝酵素の機能解析への応用

A-3）研究活動の概略と主な成果
 a) 結晶スポンジ法とは、超分子化学の基礎研究から生まれた分子の構造解析技術である。本手法は、信頼性の高い構造決定手法として知られるX線結晶構造解析を、本来は必要な工程である解析対象物の単結晶化を経ることなく行うことができる画期的な構造解析法である。我々は、この結晶スポンジ法を用いて、二次代謝酵素の機能解析に取り組んでいる。二次代謝酵素の機能解析においては、酵素の生産する酵素産物の構造決定が極めて重要であると同時に困難であり、この問題の解決に結晶スポンジ法の利用が有効であると考えた。

また、結晶スポンジ法は、解析対象物の結晶化を必要としないという利点の他に、微量（数マイクログラム以下）の解析対象物しか必要としないという利点も併せ持っている。本年度は、この後者の点に着目し、結晶スポンジ法の使用によって、二次代謝酵素の解析スキーム全体を小スケール化できることを実証した。具体的には、二次代謝酵素の解析に頻用される遺伝子組換え微生物を用いた酵素産物の生産を小スケール化して行い、得られたごく僅かな酵素産物のみを用い、結晶スポンジ法によって構造決定を達成した。具体的には、通常NMRなどを用いた構造決定に十分な量の酵素産物を得るために遺伝子組換え微生物を数Lから数十Lの培地を用いて培養を行う必要があるところ、本研究では、おおよそ100分の1にたる25mLの培養液を用いた培養から得た酵素産物のみを用いて、その構造決定に成功した。

B-1）学術論文

252 研究活動の現状

B-3) 総説, 著書

B-4) 招待講演
藤田 誠,「化学と幾何学: 多面体の定理を活用したものづくり」, 第135回分子科学フォーラム, オンライン開催, 2023年2月.
藤田 誠,「マイクロ結晶スポンジ法（MicroCS法）：質量分析に迫る極微量X線分子構造解析」, 第70回質量分析総合討論会, 福岡, 2022年6月.
藤田 誠,「化学と幾何学：多面体定理を活用したものづくり」, 令和4年度化学系学協会東北大会（盛岡大会）, 岩手, 2022年9月.

B-6) 受賞, 表彰
藤田 誠, 朝日新聞文化財団朝日賞 (2023).
藤田 誠, 化学の家財団国際賞 (2022).

B-7) 学会および社会的活動
学会誌編集委員
Chemical Science 誌, Editorial Board (2018-).
Acc. Chem. Soc. 誌, Editorial Board (2018-).

B-10) 競争的資金

研究活動の現状 253
C) 研究活動の課題と展望
本年度は、結晶スポンジ法の利用によって、二次代謝酵素の機能解析実験を小スケール化することが可能であると実証できた。これにより、二次代謝酵素の機能解析をますます迅速に行うことができるようになると期待される。近年の遺伝子解析技術の発展を背景に、興味深い二次代謝酵素をコードする遺伝子が次々と見出だされており、こうした酵素について結晶スポンジ法を駆使することで逸早く解析し、酵素機能に関する数多くの知見を蓄積していきた
A-1) 専門領域: 物性物理学, 量子ビーム科学

A-2) 研究課題:
 a) 機能性固体・薄膜の電子状態の分光研究
 b) 物質科学に向けた新しい放射光分光法の開発
 c) 新しい量子ビームを使った分析技術の開発

A-3) 研究活動の概略と主な成果
 a) 機能性固体・薄膜の電子状態の分光研究: 磁性と伝導が複雑に絡み合うことにより新しい機能性が現れる固体・薄膜については, 低温・高圧・高磁場下の赤外・テラヘルツ分光と高分解能三次元角度分解光電子分光および時間分解分光により, 機能性の起源である電子状態を詳細に決定している。また, それらの実験条件に合わせた第一原理電子状態計算を組み合わせることで, 機能性固体・薄膜の電子状態の総合的な情報を得ている。

 b) 物質科学に向けた新しい放射光分光法の開発: UVSOR や次世代放射光で用いることを想定した新たな分光法を開発する。特に, 電子構造のダイナミクスを可視化することを目標に, 新たな光電子分光法と赤外分光法の開発を進めており, 物質科学への応用を図る。

 c) 新しい量子ビームを使った分析技術の開発: スピン偏極高輝度電子源を用いた高エネルギー分解能スピン・角度分解共鳴電子エネルギー損失分光法の開発を進めている。

B-1) 学術論文

B-3) 著説，著書

B-4) 招待講演

B-7) 学会および社会的活動
学協会役員等
日本放射光学会評議員 (2021.9–2023.9).
文部科学省，学術振興会，大学共同利用機関等の委員等
東京大学放射光連携研究機構物質科学ビームライン課題審査委員会委員 (2021.4–2023.3).
広島大学放射光科学研究センター協議会委員 (2018.4–2024.3).
SPring-8/SACLA 成果審査委員会[査読者] (2016.4–2024.3).
量子科学技術研究開発機構 次世代放射光施設利用研究検討委員会委員 (2019.4–2023.3).

B-8) 大学等での講義，客員
大阪大学大学院生命機能研究科, 教授, 2013年7月 -.
大阪大学大学院理学研究科, 講義「シンクロトロン分光学」, 2022年4月–9月.
大阪大学理学部, 講義「光物理学」, 2022年4月–9月.
大阪大学大学院生命機能研究科, 講義「基礎物理学」, 2022年4月–9月.
大阪大学大学院生命機能研究科, 実習「基礎物理学実習」, 2022年4月–9月.
大阪大学全学教育推進機構, 講義「力学評論I」, 2022年10月–2023年2月.
B-10) 競争的資金

科研費基盤研究(B),「スピン分解共鳴電子エネルギー損失分光法の確立とスピン量子物性への応用」, 木村真一 (2020年度−2022年度).

(公財)光科学研究振興財団,「新規内殻共鳴分光法の開発と中間状態の電子状態の検証」, 木村真一 (2020年度−2022年度).

C) 研究活動の課題と展望

物質機能の起源である電子構造を明確にすることは, 物性の理解を深め, 新しい機能性を創りだすのに重要である。そのため, 準粒子を観測するための手段として, これまで放射光を使った角度分解光電子分光と赤外・テラヘルツ分光を推進してきた。現在は, 準粒子とともに重要な素励起である集団励起の観測を行うために, 内殻共鳴電子エネルギー損失分光法 (rEELS) の開発を進めている。クロスアポイントメントの5年間で, rEELS をスピン分解, 角度分解, 時間分解に拡張するとともに, スピン・角度分解共鳴逆光電子分光法の開発も行っていく。
A-1) 専門領域：界面分子科学,触媒科学

A-2) 研究課題:
 a)有限厚さをもつ固液界面のオペランド計測：創／省エネルギーを支えるサイエンスの構築

A-3) 研究活動の概略と主な成果
 a) 創エネルギーと省エネルギーという社会ニーズに応えるために、高収率の半導体光触媒と低摩擦の潤滑油が最近20年のあいだに次々と開発されてきた。これら新材料をオペランド計測する手法に工夫をこらして有限の厚さ（1µm–1nm）をもつ液体−固体界面が機能を発現するしくみを理解する。分子論的な界面（液体分子と固体分子が接触する場所）でおきる現象と、分子論的な界面へ物質とエネルギーを入出力する場所でおきる現象を同時に計測し一体として理解することの重要性を光触媒（物質変換）と潤滑油（力学的エネルギー散逸）というケーススタディをとおして世界へ発信することを目的とする。①電子励起状態にある光触媒の軟エックス線分光と全反射光学分光の手法開発②潤滑油界面のナノ力学計測と単一分子蛍光追跡の手法開発が本年度の成果である。

B-4) 招待講演
 大西 洋、「半導体光触媒をもちいた人工光合成反応のオペランド計測：溶存酸素の高速検出とダイアモンドプリズムを用いた光学分光」, 日本オプトメカトロニクス協会第2回フォトンテクノロジー技術部会, オンライン開催, 2022年10月。
 大西 洋,「半導体光触媒のオペランド界面計測：ダイアモンドプリズムを用いた光学分光と溶存酸素の高速検出」, 実用表面分析セミナー2022, 神戸, 2022年11月。
 大西 洋,「水中ですすむ触媒反応のオペランド計測：光触媒の事例」, 第445回触媒科学研究所コロキウム, 北海道大学, ハイブリッド開催, 2023年2月。
B-7) 学会および社会的活動
学協会役員等
(社) 応用物理学会薄膜・表面物理分科会幹事 (2006–).
日本表面真空学会理事 (2022–).
学会の組織委員等
The 22nd International Vacuum Congress (IVC-22), program committee co-chair (2020–2022).
文部科学省、学術振興会、大学共同利用機関等の委員等
触媒科学計測共同研究拠点課題等審査専門委員会委員長 (2022–).
学会誌編集委員
日本表面真空科学会電子ジャーナル委員 (2002–).

B-10) 競争的資金
科研費基盤研究 (A), 「人工光合成をめざす半導体光触媒：オペランド計測によるミリ秒反応化学の解明」, 大西 洋 (2022年度–2024年度).
科研費挑戦的研究所（萌芽）, 「固体に挟まれた潤滑油分子の並進運動計測：単一蛍光分子追跡」, 大西 洋 (2021年度–2023年度).

C) 研究活動の課題と展望
【光触媒】水－光触媒界面ですすむ物質変換に焦点を絞った研究を展開していく。従来の光触媒ダイナミクス研究はフェムト秒からマイクロ秒で進む電子のうごき (電子励起と電荷分離)に注目してきた。有限厚の水－光触媒界面で物質輸送を含むミリ秒の反応化学の解明をめざす。
【潤滑油】潤滑油－固体界面におけるエネルギ散逸の鍵となる分子運動性を定量評価するために原子間力顕微鏡を駆使したナノ力学計測と、生体膜研究に常用される単一蛍光分子追跡を潤滑油界面計測に転用する研究を進めていく。
A-1) 専門領域: 有機合成化学, 有機金属化学, ペプチド科学, X線吸収分光

A-2) 研究課題:
a) X線吸収分光を基盤とする革新触媒の開発
b) マイクロ波照射による有機反応促進機構の解明
c) メタロ化ペプチド基盤人工酵素を用いる木質バイオマスの循環資源化

A-3) 研究活動の概要と主な成果
a) 溶液X線種分光と量子化学計算の融合によって、NMR等の従来の分析手法では困難な、常磁性の触媒活性種や高活性で不安定な活性種の「その場観察XAFS」の開発を目的とした研究を推進してきた。特にUVSOR（BL3U）において、長坂博士と共同研究を行ない、酸素や水分に対して不安定な反応活性種の溶液軟X線吸収分光法の開発に成功した。具体的には、鉄触媒クロスカップリング反応の触媒活性種であるアリール鉄錯体やGrignard反応剤の溶液XAFS測定を行うために、各種有機溶媒に高い耐性を有するピーク樹脂製フローセルを開発した。このセルでは、金蒸着されたSiN薄膜を窓材として用い、金線で窓材をアースすることによって有機溶媒の送液によって発生・蓄積する静電気を除去できる。そのため、従来型フローセルで問題となっていた静電気によるノイズやベースラインのドリフトを抑え、長時間安定して溶液XAFS測定を行える。また、上記フローセルを用いるXAFS測定では、常に新鮮なサンプル溶液が供給されるため、軟X線によるサンプルダメージを最小限に抑えることができる。さらに、フローリアクタを接続することで、実際の反応に用いる試薬と触媒を流路内で反応させ、系中に生成する反応/触媒活性種の「その場観察」が可能であるという特徴を有する。2021年度では、不安定なFe/Ni触媒種のFe-L/Ni-L端および有機マグネシウム反応剤（Grignard試薬）のC-K/O-K端の溶液XAFS測定に成功した。2022年度では、有機化学における未解決の反応機構・活性種問題を解決するために、触媒種/反応種を拡張し、さらにフローリアクタを用いて反応過程のXAFS観察を行いたい。

b) マイクロ波照射化学合成は、電熱ヒーター等の従来型の通常熱源を用いる反応と比べて、1/10程度のエネルギー消費量で、最大1000倍に達する反応加速効果が得られること、反応物質や触媒選択加熱による反応制御によって所望の物質のみを選択的に合成できる優れた特徴を有する。しかしながら、このような加速現象の発見から30年以上が経過した現在でも、マイクロ波照射によって化学反応が加速される分子科学的な機序は明らかになっていない。我々は、マイクロ波による反応加速現象の学理解明を目的として、2020年度より分子研（田中、長坂）と核融合研（加藤、村上）の融合研究を立上げ、マイクロ波照射下における化学反応のその場観察と分子動力学・QM/MMによる分子挙動のシミュレーションについて基礎検討を行っている。2021年度は、UVSORの赤外/THzビームライン（BL1B）の光学系に挿入できるマイクロ波照射装置の開発に成功し、マイクロ波照射下でのテラヘルツ測定に成功した。2022年度では、マイクロ波効果のプローブ分子として知られるニトロベンゼン類を用い、テラヘルツ分光によるマイクロ波特異的効果の直接検出に取り組みたい。

c) 木質バイオマスはリグニン、セルロース、ヘミセルロースを主成分とする複雑な生体分子である。我々は、リグニン
およびセルロースを認識するペプチドと金属触媒を結合し人工酵素を開発し、これを用いて木質炭素系からのリグニン／セルロース選択的な分子変換法の開発に取組んでいる。2020年度には、リグニン認識能を有する12残基ペプチドに高い酸化能を有するRu錯体触媒を結合した人工酵素の合成に成功した。また、蛍光異方性測定と分子動力学計算によってペプチドのリグニン認識においてペプチド残基とリグニン水酸基および芳香族骨格の水素結合とCH/π型相互作用が支配的であることを明らかにした。2022年度では、分子動力学計算およびITCによるリグニン認識機構の解明に取組むとともに、マイクロ波／メカノケミカル反応による木質バイオマスの高効率／高選択性な分解反応の開拓を行う。

B-1) 学術論文

B-2) 国際会議のプロシーディングス

B-3) 総説、著書
高谷 光, 「4章–11. 単結晶X線構造解析(Single Crystal X-ray Structure Analysis)」, 「高谷総合辞典」, 朝倉書店 (2023).

B-4) 招待講演
高谷 光, 「文化財と放射光分析」, 京都大学「陶磁器の化学」第1回ワークショップ, 京都大学吉田キャンパス百周年時計台記念館, 京都市, 2022年10月.
高谷 光, 「応反応有機金属錯体のX線XAFS」, UV シンポジウム2022, 分子科学研究所, 岡崎コンファレンスセンター, 岡崎市, 2022年11月.
高谷 光, 「X線吸収分光による溶液中分子構造決定」, 筑波大学数理物質系セミナー, 筑波大学, つくば市, 2022年12月.

B-5) 特許出願
特許出願
特許第7072778号, 「イミダゾール誘導体の製造方法」 淡路 隆司, 中村正治, 高谷 光, 藤崎勝弘, フランチェスカ・ビンチェラ, 福田健治 (京都大学, 太陽日酸 (株)) (登録日2022年5月13日)。
B-5) 受賞、表彰

B-7) 学会および社会的活動

学協会役員等

SPring-8 利用推進懇談会「SPring-8 先端放射光技術による化学イノベーション研究会」主査委員 (2017–).

学会の組織委員等

日本化学会春季年会イノベーション共創プログラム (CIP) 委員長 (2015–).

文部科学省、学術振興会、大学共同利用機関等の委員等

日本学術振興会産学協力研究・企画委員 (2020–).

学会誌編集委員

日本電磁場エネルギー応用学会機関誌編集委員 (2019–).

その他

B-8) 大学等での講義、客員

京都大学量子ビームアライアンス、オンライン講義講師、「X線吸収分光」 2021 年– .

中部大学工学部, 客員准教授, 2022 年 4 月–2023 年 2 月, 客員教授, 2023 年 3 月– .

帝京科学大学生命環境学部, 「有機化学I」「有機化学II」「化学療法論」「生命科学基礎実験I」「生命科学基礎実験 II」「1 年次基礎ゼミ」, 2022 年– .

理化学研究所, 客員研究員, 2022 年 4 月– .

B-10) 競争的資金

科研費基盤研究 (C), 「植物バイオマス循環資源化のためのメタル化ペプチド人工酵素の創製」 高谷 光 (2021年度–2023年度).

科学技术振興機構 CREST 研究「新たな生産プロセス構築のための電子イオン等の能動的制御による革新的反応技術の創出」領域、「レドックスメカノケミストリーによる固体有機合成化学」 (代表; 伊藤 聡), 高谷 光 (共同研究者) (2021年度–2025年度).

262 研究活動の現状
B-11）産学連携

共同研究、抗菌化研（株）、「新奇な抗菌性物質の開発と作用機序の解明」、高谷 光（2022年）。

共同研究、ENEOS（株）、「潤滑油成分の物性・構造解析」、高谷 光（2022年）。

共同研究、本田技研工業（株）、高谷 光（2022年）。

C) 研究活動の課題と展望

XAS 研究においては、触媒と反応基質を混合・反応させて任意のタイミングでXAS 測定が行えるフローリアクタの開発と、これを用いる均一系触媒反応機構に関する研究、およびマイクロ波照射下におけるin situ 反応解析に必要な溶液分光セルおよびUVSOR の軟X線光源に挿入可能なマイクロ波反応装置およびメカノケミカル条件でのXAS 測定可能なセル開発に注力した研究を行なう。また、これにXAS 測定から得られたスペクトルを用いた構造解析のために溶媒を含めた触媒活性種、反応機構解析のためにQM/MM による内核励起スペクトルシミュレーションに取組む。
研究活動の現状

中村 彰彦（准教授）（2022年8月1日着任）
（クロスアポイントメント：静岡大学農学部）

中根 香織（事務支援員）

A-1) 専門領域：生化学, 生物物理学

A-2) 研究課題：
 a) ポリエチレントレフタレート加水分解酵素の改良
 b) ポリエチレントレフタレート吸着酵素の開発

A-3) 研究活動の概略と主な成果
 a) ポリエチレントレフタレートは飲料ボトルや衣料などに使用されている身近なプラスチックである。低コストで環境負荷の低いリサイクル方法を開発するため、その分解酵素の機能の向上を試みている。酵素表面に露出しているアミノ酸95個を塩基性アミノ酸または酸性アミノ酸に変更し、表面電荷を変更した酵素ライブラリを作成した。活性スクリーニングしたところ2つの変異体で鉱型酵素よりも高い活性をもつことがわかった。
 b) 使用量が多いプラスチックは環境中へ流出する可能性が高く、細かく粉砕されたプラスチック片による環境汚染が問題視されている。しかし検出に手間がかかるため正確な実態は不明である。そこでポリエチレントレフタレートに特異的に吸着する酵素の開発を試みた。キチン吸着酵素を鉱型としてファージディスプレイ法により変異体のスクリーニングを行ったところ、ポリエチレントレフタレートに吸着する変異体が取得できた。蛍光タンパク質との複合体を作成し吸着を計測したところ、天然型酵素では吸着しないが変異体では吸着が確認でき、PETが染色可能であることがわかった。

B-1) 学術論文

B-7) 学会および社会的活動
 学協会役員等
 （公財）新世代研究所バイオ単分子研究会会員(2022-)。
 学会の組織委員等
 第61回日本生物物理学会実行委員(2022)。
B-10) 競争的資金
科学技術振興機構創発的研究支援事業、「プラスチックを探して壊すバイオマイクロドローンの創出」中村彰彦（2022年度–2024年度）。
科研費基盤研究(B)、「自然界に学ぶ「バイオマス分解機構」の解明」（代表：金子　哲）、中村彰彦（研究分担者）（2021年度–2023年度）。

B-11) 産学連携
共同研究、キリンホールディングス（株）、「PET分解酵素の開発」、中村彰彦（2022年）。

C) 研究活動の課題と展望
ポリエチレンテレフタレート分解酵素の改良では、得られた2つ以上の変異を掛け合わせることで相加的に活性が向上するかどうか、及び耐熱性が向上しているかどうかの確認が必要である。今後精製酵素を用いて詳細な比較をおこなっていく。ポリエチレンテレフタレート吸着酵素の開発では、天然型酵素では全く吸着しなかったが変異体では明らかに吸着が確認できたため新たな吸着酵素の開発に成功したといえる。ただし天然型酵素の天然基質であるキチンへの吸着能が残っているため、今後は吸着特異性の向上を進めていく。
6-9 社会連携研究部門

平 等 拓 範（特任教授）(2019年4月1日着任)
（クロスアポイントメント：理化学研究所放射光科学研究センター）

佐野雄二（特命専門員）
竹家啓（特任研究員）
YAHIA, Vincent（特任研究員）
LIM, Hwanhong（特任研究員）
KAUSAS, Arvydas（特任研究員）
鈴木昌世（特任研究員）
市井智章（特任研究員）
角谷利恵（特任専門員）
植栗敦（特任専門員）
川瀬晃道（特別訪問教授）
吉田光宏（特別訪問准教授）
石月秀貴（特別訪問研究員）
佐藤庸一（特別訪問研究員）
辻 明宏（特別訪問研究員）
吉岡孝史（特別訪問研究員）
松田俊樹（技術支援員（派遣））
小林純（技術支援員（派遣））
水崎一彦（技術支援員（派遣））
伊吹剛（技術支援員（派遣））
鄭 稀燮（技術支援員（派遣（理研）））
小野 陽子（事務支援員）
稲垣弥生（派遣（理研））

A-1) 専門領域：量子エレクトロニクス、光エレクトロニクス、レーザー物理、非線形光学

A-2) 研究課題：
a) マイクロドメイン構造制御に関する研究
b) マイクロドメイン光制御に関する研究
c) マイクロ固体フォトニクスの展開

A-3) 研究活動の概略と主な成果
分子科学に関連して重要な波長域にレーザーの高輝度光を展開する為の固体レーザー、非線形波長変換法につき包括的な研究を進めている。特に近年のマイクロ固体フォトニクス、マイクロチップNd:YVO₄レーザー（1990年）、Yb:YAGレーザー（1993年）、セラミックレーザー（1997年）、バルク擬似位相整合（QPM）素子：大口径周期分極反転MgO:LiNbO₃（PPMgLN）（3mm厚2003年、5mm厚2005年、10mm厚2012年）を先導すると共に、共同研究を通じ赤外域分子分光などにその展開を図っている。国際誌の雑誌編集、特集号企画から国際シンポジウム・会
研究活動の現状

議の企画提案、開催に積極的に参加する事でその成果を内外に発信している。

a) マイクロドメイン構造、界面（粒界面、結晶界面、さらには自発分極界面）を微細に制御する固相反応制御法の研究として、レーザー-セラミックス、レーザー-素子、分極反転素子の作製プロセスの高度化を図っている。特に、固体レーザーの発光中心である希土類イオンの軌道角運動量を利用したマイクロドメインの配向制御は、これまで不可能だった異方性セラミックスによるレーザー発振を成功させただけでなく原理的にはイオンレベルでの複合構造を可能とする。さらに最近、表面活性層合による異種材料接合に成功し、Distributed Face Cooling（DFC）構造によるTiny Integrated Laser（TILA）なる次世代の高性能な高集積小型レーザーに関するコンセプトが検証された。これより、新たなフォトニクスを創出できるものと期待している。

b) 光の発生、増幅、変換の高度制御を可能とする為の研究として、希土類イオンの発光・緩和機構の解明、固体内の光エネルギー伝搬、さらにはマイクロドメイン構造と光子及び音子の相互作用機構の解明、非線形光学過程の解明、モデル化を進めている。Ybレーザーの機械解明、Ndレーザーの直接励起可能性、希土類レーザーの励起光飽和特性、YVO₄の高熱伝導率特性の発見。実証に繋がったばかりでなく、マイクロ共振器の高輝度効果、レーザー利得と非線形光学過程の量子相関などの興味深い展開も見せており、特にレーザー科学発展の中で生じたパルスギャップ領域であるサブナノ秒からピコ秒の便利な光源開拓に関する貢献、パルスギャップレーザーによる新現象の解明などが期待できる。

c) 開発した光素子を用いた新規レーザー、波長変換システムの開発と展開を図っている。これまでにもエッジ励起セラミックスYb:YAGマイクロチップレーザーによる高直流出力動作、手のひらサイズジャイアントパルスマイクロチップレーザーからの高輝度温度光発生、マイクロチップレーザーからのUV光（波長:266nm）からラベルツ波（波長:100〜300µm）、さらには高効率・高出力のナノ秒パラメトリック発生（出力エネルギー約1J、効率約80%）、波長5〜12µmに至る広帯域波長可変赤外光発生、1.5サイクル中赤外光からのコヒーレント軸X波（波長:〜5nm）アト秒（200〜300as）発生などをマイクロ固体フォトニクスで実証した。アト秒発生に重要な中赤外OPCPAでは、LA-PPMgLNを用いた波長2.1µmにてパルス幅15fsを平均出力10Wと、この領域で世界最大出力を達成した。特にマイクロチップレーザーでは、パルスギャップであるサブナノ秒での高輝度光発生が望め、光イオン化過程に有利なため極めて低いエネルギーで効率的なエンジン点火が可能となる。すでに世界ではじめての自動車エンジン搭載、走行実験も成功している。また、この高輝度光は光ブラストレリック過程によるテラヘルツ（THz）波発生にも有利である。また、LA-PPMgLNを用いてピコ秒領域でmJに至る狭線幅THz波発生も可能となった。レーザー・レーザーによる量子限界を超える効率である。今後、分子の振動状態についてのより詳細な分光学的情報を得ることから、THz波による電子加速までと幅広い展開が期待される。

B-1）学术論文

研究活動の現状

研究活動の現状

B-3) 総説，著書

B-4) 招待講演

平等拓範，「【LIC】小型集積レーザーの自動車展開」，OPIC2022 セミナー「新ビジネス展開の鍵が潜む世界の先端光技術」，オープンセミナー「5G/beyond 5G 時代の革新的ネットワーク技術」，OPTICS & PHOTONICS International Exhibition 2022 （OPIE ’22），パシフィコ横浜，横浜，2022年4月.

平等拓範，「先進レーザーの様々な自動車展開——小型集積レーザーを中心に——」，自動車産業で活躍するレーザー，レーザー基礎及応用技術セミナー，OPTICS & PHOTONICS International Exhibition 2022 （OPIE ’22），パシフィコ横浜，横浜，2022年4月.

平等拓範，「マイクロチップレーザーの開発と展開（仮）」，電子情報通信学会レーザ・量子エレクトロニクス研究専門委員会（LQE）／レーザ学会合同研究会（LSJ）合同7月研究会，彦根，2022年7月.

平等拓範，「極限固体レーザーとレーザー加速」，第26回（2022年度）福井セミナー，オンライン開催，2022年8月.

平等拓範，「TILA コンソーシアムの活動」，光産業技術振興協会，2022年度多元技術融合光プロセス研究会第2回研究交流会，分子科学研究所，岡崎，2022年9月.

佐野雄二，平等拓範，「小型レーザー開発の最前線とそのピーニング・フォーミングへの応用」，レーザー学会学術講演会第43回年次大会，ウインクあいち，名古屋，2023年1月.

平等拓範，「国際会議 Photonics West 2023 参加報告」，光産業技術振興協会，第4回光材料・応用技術研究会，ハイブリッド開催，2023年3月.

T. TAIRA， “High-power extreme solid-state laser in giant micro-photonicse,” ATLA-Project 1, Tiny Integrated Laser and Laser Ignition Conference (LIC 2022), OPIC 2022, Yokohama (Japan) (Hybrid), April 2022.

A. KAUSAS and T. TAIRA， “Inter layer assist surface activated bonding for TILA PowerChipe,” ATLA-Project 1, Tiny Integrated Laser and Laser Ignition Conference (LIC 2022), OPIC 2022, Yokohama (Japan) (Hybrid), April 2022.

M. YOSHIDA, T. TAIRA, A. KAUSAS, A. TSUJI and Y. VINCENT， “High power laser development based on the direct bonded laser crystal technologye,” ATLA-Project 2, Tiny Integrated Laser and Laser Ignition Conference (LIC 2022), OPIC 2022, Yokohama (Japan) (Hybrid), April 2022.

B-5) 特許出願

B-7) 学会および社会的活動

学協会役員等

光産業技術振興協会光材料・応用技術研究会幹事 (2004–).

光産業技術振興協会多元技術融合光プロセス研究会幹事 (2009–).

日本光学会レーザーディスプレイ技術研究グループ実行委員 (2015–).

日本光学会光エレクトロニクス産学連携専門委員会学会委員及び主査 (2020.4–).

日本光学会生体ひかりイメージング産学連携専門委員会委員及び幹事 (2022–2026).

米国光学会 The Optical Society (OSA) フェロー (2010–).

国際光工学会 The International Society for Optical Engineering (SPIE) (米国) フェロー (2012–).

米国電気電子学会 The Institute of Electrical and Electronics Engineers (IEEE) フェロー (2014–).

The International Academy of Photonics and Laser Engineering (IAPLE) フェロー (2018–).

OPTICA(Formerly OSA), OPTICA Fellow Members Committee 委員 (2021–2023).

科学技術交流財団「ジャイアント・マイクロフォトニクス」研究会座長 (2021–2024).

学会の組織委員等

SPIE Photonics West, LASE, 国際会議委員会共同議長 (米国, サンフランシスコ) (2019–2024).

Mid-Infrared Coherent Sources (MICS) 2022, テクニカル・プログラム委員会委員 (2021–2023).

文部科学省, 学術振興会, 大学共同利用機関等の委員等
新エネルギー・産業技術総合開発機構 (NEDO) 事前書面審査 (2013–2024.3).

学会誌編集委員

B-10) 競争的資金
科学技術振興機構CREST研究, 「ジャイアントパルス・マイクロチップレーザーの生体応用への最適化」, 平等拓範 (2017年度–2022年度).
安全保障技術研究推進制度, 「ジャイアント・マイクロフォトニクスによる高出力極限固体レーザ」, 平等拓範 (2020年度–2022年度).
科学技術振興機構CREST研究, 「ホログラム光刺激による神経回路再編の人為的創出」（代表：和気弘明）, 平等拓範 (再委託) (2017年度–2022年度).
文部科学省平成30年度科学技術試験研究委託事業 (Q-LEAP)「先端レーザーイノベーション拠点「次世代アト秒レーザー光源と先端計測技術の開発」部門」, 「次世代アト秒レーザー光源と先端計測技術の開発」（②a.10KHz 赤外OPCPA光の開発）, 再委託（東京大学）, 平等拓範 (2018年度–2027年度).
中小企業経営支援等対策資金補助金 戦略的基盤技術高度化支援事業（サポイン）, 「狭隘部への適用が可能な可搬型レーザビーニング装置の開発」（事業管理機関：公益財団法人名古屋産業科学研究所, 責任研究代表者：LAcubed）, 平等拓範 (副総括研究代表者), (2020年度–2022年度).

B-11) 産学連携
受託研究, (株) コンポーネン研究所, 「物資, 生命, コンピューター科学の融合領域における光科学視点の調査研究」, 平等拓範 (2022年度).
共同研究, 東芝エネルギーシステムズ (株), 「マイクロチップレーザーを用いた非接触超音波検査」, 平等拓範 (2022年度).
共同研究, 東海光学 (株), 「透明樹脂内部へのレーザー加工にかかる研究開発」, 平等拓範 (2022年度).
共同研究, 東海光学 (株), 「高出力密度レーザー材料に適した表面処理法の開発」, 平等拓範 (2022年度).
共同研究, トヨタ自動車 (株), 「小型集積レーザー（TILA）による窒化の研究」, 平等拓範 (2021年度–2022年度).

272 研究活動の現状
共同研究、トヨタ自動車（株）、「量子LiDARや量子イメージング向けに、高輝度レーザーとPPLN等の多機能非線形光学材料を用いた量子光源の研究を行う」、平等拓範（2022年度–2023年度）。
共同研究、（株）村田製作所、「水晶波長変換デバイスの研究」、平等拓範（2018年度–2022年度）。
共同研究、（株）成田製作所、「マイクロチップレーザーによる成型方法の開発」（2022年度）。
共同研究、三菱電機（株）、「小型集積化に向けた高強度レーザ光源研究開発」（2022年度–2023年度）。

C) 研究活動の課題と展望
先端的レーザー光源の中で、特にビーム高品質化（空間特性制御）ならびに短パルス化（時間特性制御）などの高強度化、そしてスペクトルの高純度化を広い波長領域（スペクトル特性制御）でコンパクト化と同時に実現することは、極めて重要な課題である。一方、極限的な粒子加速が期待されるレーザー加速では、物質の性質を原子・分子レベルで解明し、さらに化学反応などの超高速の動きを捉えることができ、広範な分野の最先端研究に利用される加速器。特にX線自由電子レーザーSACLAをトレーラーサイズにまで小型化できると期待される。しかし、その加速のための高強度レーザーが非常に大であることの深刻な問題となり、マイクロ固体フォトニクスへの期待が高まっている。
今後、レーザー加速による小型加速器の構築を目指すと共に、レーザー加速に資する先端レーザー科学を、別途、社会連携研究、小型集積レーザー（TILA, Tiny Integrated Laser）コンソーシアムにて製造、医療、環境・エネルギー問題などに展開し、基礎研究の推進が社会貢献に繋がることを検証して行きたい。
6-10 研究施設等

機器センター

満 丈 俊（主任研究員）（2020年6月1日着任）
兵藤 由美子（事務支援員）

A-1) 専門領域：表面界面科学，エネルギー変換，物理化学

A-2) 研究課題：
 a) 走査プローブ顕微鏡の高度化と物性・反応機構の解明
 b) 表面界面におけるエネルギー変換の機構解明
 c) 環境浄化反応の材料物性と反応機構解明

A-3) 研究活動の概略と主な成果
 a) 構築した大気非暴露環境で稼働する電気化学走査プローブ顕微鏡のシステムを用いて，原子およびナノレベルの物性を解析した。結晶性と平坦度を高めた試料を用いることが出来るセルを開発し，昨年度よりも高感度かつハイパワーの測定を可能にした。昨年度は電極電解液界面に生成する界面膜の機械物性を数十個のデータから解析していたが，今年度は，1000~10000以上のデータを用いてその特性を解析した。その結果，これまで見えなかった新しい特徴を検出すことが出来た。また，走査プローブ顕微鏡の画像から新たな情報を引き出す手法の開発を進め，第一原理計算を用いた解析によって，固体表面での電子的な相互作用の特徴を解明することに成功した。
 b) 固体と液体の界面で起きる現象には，温度による影響を大きく受ける現象がある。これらの現象が生じる物性や機構を解明するために，本年度は気体雰囲気で固液界面系の温度を制御するシステムを構築し，走査プローブ顕微鏡測定を行った。低温での固液界面観察に成功し，ナノレベルでの構造を観察する事が出来た。また，フォースカーブ解析によって，機械特性などの特性を測定することに成功した。
 c) 東日本大震災によって2011年に被災した福島第一原子力発電所からは，大量の放射性汚染水が発生している。これまで吸着材を用いた除染作業が行われているが，より高性能かつ安価な材料の開発が強く望まれている。本研究では，開発を進める新しい吸着材について，材料表面や反応液との界面における構造，電子状態などの物性や反応機構を解析する。本研究は，信州大学，東北大学，Diamond Light Source（英国），The University of Sheffield（英国）との国際共同研究であり，日本原子力研究開発機構英知事業の国際協力型研究プログラム（研究）として進めている。本年度は，吸着材となる金属酸化物の原子レベルでの構造解析を行った。イオン交換反応によって構造が変化する様子を解析し，さらに構造解析を用いて，構造と性能の相関を解析した。また，イオン交換反応中における金属酸化物単粒子の変化をin-situ走査プローブ顕微鏡で解析し，粒子内分布を検出することに成功している。
B-1) 学術論文

B-4) 招待講演

湊 丈俊,「ナノレベル解析手法の最前線」 東海・北陸地区国立大学法人等技術職員合同研修, 岡崎市, 2022年9月.

湊 丈俊,「科学を学ぶ意義」 令和4年度青森県高教研理科部会研究大会, 八戸市, 2022年8月.

T. MINATO, “Interfaces between electrode and electrolyte in rechargeable batteries analyzed by scanning probe microscopy,” 14th International Symposium on Atomic Level Characterizations for New Materials and Devices ’22 (ALC’22), Nago (Japan), October 2022.

T. MINATO, “Physical properties of atomic defects on titanium dioxide studied by scanning probe microscopy,” The International Ultrafast Knowledge Coffee House, Pittsburg (USA) (Online), January 2023.

B-7) 学会および社会的活動

学会役員等

日本物理学会 代議員 (2023–).

学会の組織委員等

理科教育活動

出前授業「光のてこを使って目に見えないモノの形と働きをさわって調べる顕微鏡を体験しよう——てこの勉強のとき、どうしてめんどうな計算をするんだろう？——」岡崎市立六名小学校 (2023).

その他

B-10) 競争的資金

自然科学研究機構若手研究者による分野間連携研究プロジェクト 共同研究のためのスタートアップ, 「昆虫のクチクラ表面構造から創る土付着低減素材」(代表: 森田慎一), 湊 丈俊 (共同研究者) (2022年度).
研究活動の現状

中 村 敏 和（チームリーダー）

B-1) 学術論文

B-7) 学会および社会的活動

学協会役員等

電子スピンサイエンス学会代議員 (2018–).

文部科学省、学術振興会、大学共同利用機構等の委員等

科学技術振興機構 創発的研究支援事業 事前評価、外部専門家 (2021–2022).

神戸大学分子フォトサイエンス研究センター共同利用・共同研究運営協議会委員 (2018–).

鈴 木 敏 泰（チームリーダー）

B-1) 学術論文

B-7) 学会および社会的活動

理科教育活動

岡崎市立竜美ヶ丘小学校 (2022).

B-10) 競争的資金

科研費学術変革領域研究 (A), 「デジタル化による高度精密有機合成の新展開」（代表：大嶋孝志）、鈴木敏泰（研究分担者） (2021年度-2025年度).
A-1) 専門領域：情報科学、ネットワーク運用技術及びサイバーセキュリティ

A-2) 研究課題：
 a) ソフトウェアを用いたネットワークの自動制御
 b) ログ解析等によるネットワーク／サイバーセキュリティの自動最適化及び認証

A-3) 研究活動の概要と主な成果
 a) ORION2022（Okazaki Research Institutes Organization Network）において、Google Workspace等のバブリッククラウドサービスの利用を前提としたゼロトラスト・アーキテクチャを取り入れたシステム構築を行い、従来のORION主認証システムを拡張し、ゼロトラストを実現する認証基盤とした。ORION主認証システムは、FIDO規格に準拠した多要素認証(MFA)を利用した新しい統合認証システム(IdP)に改修し運用している。ORION2022主認証システムは、ORIONへのネットワーク接続時の定期的な端末及びユーザ認証、VPN接続時ユーザ認証及びGoogle Workspace等のユーザ認証に利用されMFA及びシングルサインオン機能を提供している。また、MFAを行う事により確実に本人確認が行えるようになった。2023年度の早い段階でMicrosoft365の認証も統合できるように開発を進めている。
 更に、アンチウィルス・ソフトウェアに代わり新たに端末向けにEDR（Endpoint Detection and Response）の導入や端末の脆弱性検査機能の導入など、ゼロトラストを実現する上で重要な本人認証及び端末健全性の担保を行えるようにしている。

b) ORION2022で導入した器機及びサービスではAPIの提供を原則求めており、提供されたAPIによりログやイベントなどの自動取得や処理の自動化、器機／サービス間連携を行うようになっている。また、標準で提供されていない機能についてもAPIとローカルプログラムを組み合わせて柔軟に提供している。

C) 研究活動の課題と展望
ユーザや端末の認証と認可の統一化を推進していく。ORION2022は、クラウド等ORION外部のサービスを含んだ統合型ユーザ／端末管理・認証基盤。現在のログ解析基盤を拡張発展させクラウド・ログを取り込みORIONとクラウドの一貫した取扱と分析を可能とする情報セキュリティ・インシデント対応基盤やそれらを統合し自動制御するシステムとして設計。仕様化し調達を行い運用を開始している。更に、APIによるシステム間連携が行えるようになっているため、APIを用いた各システム間の連携や独自機能の開発と運用開始しており、今後機能拡張を行っていく。
B-1) 学術論文

B-5) 特許出願

特許出願

特許第 7090242号，「コードレスハンダゴテ及び保持台」，千葉 寿，米倉達郎，豊田朋範，古舘守通，藤崎聡美（自然科学研究機構，岩手大学）（登録日2022年6月16日）。

特許第 7102620号，「緊急防災ドッキングステーション」，千葉 寿，豊田朋範，古舘守通，藤崎聡美（自然科学研究機構，岩手大学）（登録日2022年11月4日）。

278 研究活動の現状
B-6) 受賞、表彰

中村永研，第10回日本放射光学会功労報酬 (2023).

B-7) 学会および社会的活動

学会役員等

日本物理学会第77期・第78期代議員 (2021–2023).（豊田朋範）

理科教育活動

岡崎市立新香山中学校 (2022).（豊田朋範）

岡崎市立小豆坂小学校 (2022).（菊地拓郎）

B-8) 大学等での講義、客員

岡野泰彬，中部大学非常勤講師，「力学」2022年度春学期，「基礎電磁気学」2022年度秋学期.
7. 点検評価と課題

2022年度よりJames M. Lisy教授（イリノイ大学）と北川進教授（京都大学）に研究顧問に就任頂いた。2022年5月開催のIMS Presentations 2022にWeb参加頂き、所全体の研究評価、研究体制についての提言をいただいた。

2023年3月には、新型コロナウイルスによる感染者の大幅な減少を受けて、ハイデルベルク大学のMatthias Weidem教授に来所頂き、光分子科学研究領域を中心ヒアリングが実施され、各グループの研究内容と極端紫外光研究施設（UVSOR）の評価をいただいた。同じく2023年3月に、マンチェスター大学David A. Leigh教授が来所し、生命・錯体分子科学研究領域を中心にヒアリングが実施され、各グループの研究内容の評価をいただいた。

2023年2月にWebで開催された運営顧問会議では2022年度に実施した特任教員などの新たな雇用制度等、就任1年目の運営上の課題について議論頂いた。

（渡辺芳人）
7-1 運営顧問による点検評価

運営顧問から第4期中期計画期間での運営方針のためのアドバイスをいただくことを目的として，3名の運営顧問を招いて運営顧問会議を開催した。

分子科学研究所の第3期中期計画期間の活動については，2019年12月から2021年7月にかけて機関の点検・評価が行われた。その結果については，分子研リポート2019において，7-1国際諮問委員会による点検評価，また分子研リポート2020において，7-1大学共同利用機関の教育研究等の検証，7-2国際諮問委員会の答申リポートとして公開されている。また，2021年度に実施された運営顧問会議の議論内容が，川合前所長から申し送られている。これらを踏まえ，分子科学研究所の抱える課題とそれらへの対応状況を，渡辺所長から運営顧問に説明した。会議当日には，第4期中期計画期間での研究所機能強化に向けた機関運営方針の提案・検討事項について運営顧問から意見をいただき，渡辺所長の考える改革案に対する支持とアドバイスが表明された。

1. 日 時：2023年2月27日（月）10:00～11:00
2. 方 式：オンライン開催（zoom会議）
3. 出席者：
 運営顧問
 菊池昇（株式会社コンポン研究所 代表取締役所長）
 長我部信行（株式会社日立製作所 ライフ事業統括本部CSO）
 瀧川仁（高エネルギー加速器研究機構 物質構造科学研究所 協力研究員）

分子科学研究所
 渡辺 芳人 所長
 山本 浩史 教授（研究総主幹，装置開発室長）

4. 議論内容：
 人事制度改革案について
 電気代の高騰について（情報共有）
This report is based on a visit to the Institute for Molecular Science from 22 March to 27 March 2023. On 22 March, Director General Professor Watanabe gave a general overview of IMS. On 23 and 24 March, there were presentations by a selection of PIs from different research departments of the institute, namely Professors Ohmori, Kera, Katho, Y. Taira, Matsui, and Tanaka from the Department of Photo-Molecular Science, Professor Sugimoto from the Department of Materials Molecular Science, Professor Kuramochi from the Research Center of Integrative Molecular Systems, Professors Okamoto and Kumagai from the Center for Mesoscopic Sciences, and Professor Taira from the Division of Research Innovation and Collaboration. The presentations were about 40–50 minutes each, including discussion. In addition, after the general introduction into the scientific activities at UVSOR Synchrotron Facility by Professor Kera on 24 March, I was also given a tour of the facility by him on the next day. On 27 March, DG Professor Watanabe had a closing discussion with me. Additional information for this report was extracted from the Annual Reviews of IMS of the years 2021 and 2022.

First of all, I would like to thank all members of IMS participating in the review as well as the team organizing my visit, who made it such a rewarding experience for me. I greatly enjoyed high quality of the presentations as well as the openness and honesty in the scientific discussions. Despite the limited duration of my stay, I could get a very good impression on part of the scientific activities at IMS as well as its general structure, which I will describe in detail in the following.

Before starting, I would like to make two disclaimers. First, most of the topics presented during my stay do not fall into my specific area of expertise. Therefore, my assessment is based on a rather general scientific point-of-view and thus cannot be regarded as a thorough evaluation, but more as a first impression from a non-expert in the field. Second, I have a long-standing and very fruitful collaboration with Professor Ohmori. So far, we have published two joint papers in the last years, a third one is close to completion. Therefore, my view on his scientific work is positively biased, and this obvious conflict of interest should be taken into consideration with regard to my statements on his research activities.

General remarks
IMS is one of five National Institutes of Natural Sciences of Japan. It is involved in a large number of prestigious national science programs. With UVSOR, it hosts one of Japan’s synchrotrons as a user facility specifically dedicated to study the structure and dynamics of chemical and condensed-matter systems. IMS maintains a large number of national and international collaborations. The training of graduate students is structured in the framework of the SOKENDAI Graduate University of Advanced Studies.

IMS meets highest international standards in terms of its scientific activities as well as its infrastructure. It hosts a large number of internationally highly renowned research groups acting at the forefront of modern science. Collaboration within the institute as well
as with national and international partners appears to be natural, if not essential as part of IMS’ mission and is supported by its structure through, e.g., dedicated funds for joint research, inter-university research networks, or support for users at the multiple beamlines at UVSOR serving different research communities.

From the presentations and the discussions with the researchers from the various departments, I gained the very positive, general impression that their research is not merely driven by scientific mainstream or rather short-term goals, but instead by a deep interest in science as well as genuine curiosity. By the same token, technological developments are motivated by providing the best possible and sustainable solution to a given scientific question, be it, e.g., instrumentation and detectors at UVSOR beamlines, or cutting-edge light sources in different IMS labs. Thus, these devices bear the promise to offer best performance and deliver excellent experimental results, thus setting standards for an entire field of research. I am certain that this kind of scientific honesty, paired with the serious dedication to the development of the best possible scientific instruments, is one of the key factors for IMS’ outstanding national and international reputation.

UVSOR Synchrotron Facility and associated research groups

From the various presentations and the guided tour around UVSOR I came to the conclusion that such a facility is well suited to an institute of the size of IMS, as it can still be largely operated and maintained with local resources. The integration of the user facility into a diverse, inspiring scientific environment as represented by the different departments at IMS provides an important added value, which might even be explored further as it possibly was already in the past. UVSOR’s operation parameters cover the range of comparably low energies (sub-GeV) combined with very high emittance. I am not an expert in electron synchrotron facilities at all, but all researchers involved in UVSOR could make a convincing case that the synchrotron is well positioned in the landscape of different synchrotron facilities in Japan and worldwide with regard to brightness and photon energies. Some of the experiments and investigations, in particular those addressing material science and biological applications, can actually be performed exclusively at UVSOR, also making use of its exquisite detector infrastructure. Therefore, UVSOR and its 14 beamlines serve a large number of national and, to a smaller extent, international users.

The different beamlines contain a large number of outermost sophisticated detectors serving a broad variety of scientific applications. Novel developments include tunable gamma-ray creation, generation of exotic light beams, and the development of Photoelectron Momentum Microscopy (PMM) and spin-resolved photoelectron spectroscopy. Due to the exquisite instrumentation, the beamlines cover a broad range of scientific applications ranging from condensed matter science, material science and biology, but also some more exotic topics such as medical applications or the structure analysis of meteorites.

Planning for future upgrade to the next generation of synchrotron facility at IMS, coined UVSOR IV, is already in progress. In this context, it will be an important task to provide a clear vision on how this future facility will maintain its competitive status, and to identify key scientific areas where the upgraded facility would provide unique scientific insights and world-leading discoveries. Ideally, design parameters for the facility as well construction plans for its instrumentation and detectors would follow from such general considerations.
Masahiro KATOH
Masahiro Katoh is responsible for the technological development and characterization of novel and high-quality light sources at UVSOR. Important recent developments include the production of light beams with non-standard propagation properties (vortex and vector beams as well as temporally-structured light) using a combination of two undulators with a synchronized laser beam. In addition, a gamma-ray source based on laser-aided Compton scattering was developed offering tunable monochromatic gamma rays. A rather spectacular result is the detection of synchrotron radiation emitted from a single stored electron and the analysis of the corresponding detection statistics. Besides these scientific studies, he pushes technological design studies for the future UVSOR-IV facility forward.

Fumihiko MATSUI
Fumihiko Matsui leads the development of photoelectron detectors at UVSOR for high-resolution electron and spin spectroscopy. He can look back to an impressive track record in the realization of 2D photoelectron spectrometers based on projection type analyzers for the study of spatially resolved atomic and electronic structure. Currently, he is heading towards further extending this technology to also reveal spin textures in condensed matter materials. While the focus of his work is on the development of instrumentation, there are important scientific results demonstrating, on the one side, the capabilities of the novel detectors. On the other side, serving the use of these detectors for studies of interesting properties of solid-state materials like, e.g., the valence band of graphite or chiral charge density waves. Being positioned between basic and applied science, his group maintains collaborations with scientific users of UVSOR from different academic institutions as well as with companies. His future plans follow a clear strategy and are well embedded into the general strategy of UVSOR. The outcomes of his activities are not only published as scientific papers, but there are also patents emerging from the technological developments.

Kiyohisa TANAKA
The group of Kiyohisa Tanaka develops instruments for Angular-Resolved Photoelectron Spectroscopy (ARPES) and applies these instruments to the investigation of the electronic structure of high-T_c superconductors, in particular from the families of cuprates and ironpnicdites. For the cuprates, the role of phonons for the enhancement of the transition temperature could be revealed, while for the ironpnictides, the superconducting gap could be observed in the electronic structure of a specific material. His scientific program is well balanced between questions from basic condensed-matter science and the required technological development of instrumentation for addressing these questions. The latest technological achievements comprise the development of a new highly efficient spin resolved ARPES system with drastically improved momentum and energy resolution. Soon, information on the spin structure will be accessible in all three dimensions by the integration of a spin manipulator foreseen as the next upgrade of the instrument.

Yoshitaka TAIRA
The research theme of Yoshitaka Taira is the generation of novel gamma-ray sources using high-energy electron beams. He uses the unique possibilities offered by UVSOR’s energy range to create cw or pulsed gamma rays in the mid-MeV range through inverse Compton scattering. As an important application, the availability of coherent gamma radiation at UVSOR opens novel applications using positron annihilation spectroscopy for probing defects in condensed matter samples. As a specific innovation, age-momentum correlations have recently been demonstrated successfully as an extension of standard positron annihilation spectroscopy. Future
plans include the generation of spin-polarized positrons using the available circularly polarized gamma rays, and the creation of
gamma-ray vortex beams from Nonlinear Inverse Thomson Scattering based on a proposal of Professor Taira and coworkers. Professor
Taira recently joined IMS. His research is very well embedded into the research agenda of UVSOR facility, significantly extending
the current capabilities of gamma-ray generation and offering intriguing applications in material research through high-resolution
gamma-ray induced positron annihilation spectroscopy.

Research groups from the Department of Photo-Molecular Science

Kenji OHMORI

The group of Kenji Ohmori pursues non-standard approaches for the implementation of quantum information processing and quantum
simulation. The experiments ingeniously combine techniques from the physics of ultracold gases, in particular Bose-Einstein
condensates, optical lattices, optical tweezers and frozen Rydberg gases, with the application of coherent control techniques employing
ultrashort laser pulses. As a recent highlight, the group has demonstrated controlled energy exchange between two single Rydberg
atoms on a nanosecond time scale, which constitutes an important precursor step for implementing ultrafast qubit gates. Kenji Ohmori
is internationally highly recognized and plays a leading role in Japan’s national quantum information program. His group is
internationally highly connected and recognized, which is also reflected by the large number of highly talented international researchers
and PhD students working in his team.

Hiromi OKAMOTO

Hiromi Okamoto is an internationally highly renowned researcher famous for his contributions to near-field chiro-optical imaging
and microscopy. The work which he presented in our meeting was truly impressive. Among recent spectacular results are, the
observation of the enhancement of spin–orbit interactions and chirality by a pair of oppositely polarized spins in an organic chiral
superconductor, the development of high-precision circular dichroism spectroscopy, or the demonstration of optical gradient forces
on chiral particles. These achievements provide exciting perspectives for further future developments in the field of nanoscopic
chiroptics with plasmonic enhancement. Without any doubt, he will continue to shape this important research field as one of its
internationally leading researchers.

Satoshi KERA

Satoshi Kera fulfills a double task at IMS in an impressively effective manner: On the one hand he is the head of the UVSOR facilities
and thus responsible also for developing concepts for the next upgrade of this synchrotron facility (see statements on USVOR above).
On the other hand, he also leads a research team devoted to studies of the electronic properties of functional organic materials. While
his core group is rather small with only few students, he takes great profit from collaborations with researchers exploring the rich
capabilities of the UVSOR facility and its dedicated beam lines, like, e.g., the Photoelectron Momentum Microscope. One current
focus of his research are studies on the dynamics of polaron formation and dynamics in organic semiconductor materials.

Research group from the Department of Materials Molecular Science

Toshiki SUGIMOTO

Toshiki Sugimoto and his team study the role of interfacial water and ice using heterodyne-detected nonlinear spectroscopy for
unveiling the molecular orientation. This innovative technique, which directly detects the proton configuration of the OH-stretching mode in water molecules, finds fruitful applications in a broad variety of material systems as explored by his group at IMS. Recent achievements include the observation of the emergence and disappearance of net proton order in heteroepitaxially grown crystalline ice films on metal surfaces as a model system of a strongly correlated proton system, or the impact of interfacial water on the C–H activation in photocatalytic methane conversion. Overall, Toshiki Sugimoto makes very efficient use of the unique capabilities of the nonlinear spectroscopy methods, which he developed, to a broad range of systems featuring interfacial water. The results obtained have high impact on the fundamental understanding of the importance of interfacial water as well as offering intriguing opportunities for engineering surfaces for novel functionalities in water aggregates.

Research group from the Research Center of Integrative Molecular Systems

Hikaru KURAMOCHI

Hikaru Kuramochi has recently joined IMS faculty from RIKEN introducing advanced ultrafast spectroscopy for studies of chemical reaction dynamics reaching from larger molecular ensembles down to the single-molecule level. For this purpose, the group also develops novel light sources for highly sensitive time-resolved 2D Raman spectroscopy of electronic and vibrational molecular degrees of freedom. In the past, Hikaru Kuramochi has already obtained impressive scientific results with high impact. Based on his outstanding career path, he presented a very ambitious, yet convincing work program with the realistic perspective to produce important scientific results at IMS in the very near future. Within a very short period of time, the (still rather small) group has built up a state-of-the-art laser lab featuring Raman spectrometers with unprecedented performance and has already realized the essential precursor steps for single-molecule ultrafast spectroscopy. I was intrigued by the nice combination of cutting-edge technological developments with exciting applications to basic science. The group maintains collaborations with a large number of groups in Japan, in particular for exploring a broad variety of molecular and material systems using the unique capabilities of time-resolved Raman spectroscopy. The future prospect of applying time resolved correlation spectroscopy to single-molecular complexes in solution could potentially become a real game-changer for the entire field of molecular reaction dynamics.

Research group from the Center for Mesoscopic Sciences

Takahashi KUMAGAI

Takahashi Kumagai recently came to IMS starting a new field of research on atomic-scale optical microscopy based on his previous experience as research group leader at the Fritz-Haber Institute in Berlin. He combines enhanced near-field optical coupling at specially designed plasmonic tips near surfaces with quantum plasmonics in the STM junction and time resolved femtosecond laser spectroscopy. In a series of spectacular experiments, he could reach sensitivity down to the single atom or molecule level. At IMS, he is now further developing this intriguing field of research by combining ultra broadband pulsed laser sources with atomic-force microscopy. In a very short period of time, he has set up a world-class lab at IMS. His ambitious goals already bear first spectacular results on nanoscale mid-infrared imaging and single-protein infrared spectroscopy. His group maintains a large number of national and international cooperations. I was very impressed not only by the internationally highly competitive research program, which he presented, but also by the outstanding results already achieved at IMS.
Research group from the Division of Research Innovation and Collaboration

Takunori TAIRA

Takunori Taira holds a double appointment at IMS and RIKEN. His expertise is on the development of laser ceramics for the realization of high-power laser sources, coined TILA (Tiny Integrated Laser). These ceramics laser materials find a broad variety of applications ranging from laser-driven beam accelerators over narrowband Terahertz generation and material processing to microlaser-induced ignition of combustion engines. Professor Taira has formed a large consortium of academic institutions and companies to further promote the TILA technology and to explore novel applications. For this purpose, a dedicated TILA Laboratory has been established at IMS. The excellent activities of Professor Taira demonstrate the remarkable potential of combining basic research with technological progress at IMS.

In conclusion, IMS hosts a large number of outstanding scientific groups covering a broad range of fields, yet with a tangible general mission in fostering interdisciplinary research in the crossroads between physics, chemistry and material science. I gained an outermost positive impression of its scientific and technological excellence, which makes it one of Japan’s internationally highly visible research centers. My visit was very enjoyable from a professional as well as personal perspective, and I would like to thank all participating members of IMS for great efforts and their warm hospitality.

Heidelberg, 30 April 2023
Evaluation of the Department of Life and Coordination-Complex Molecular Science
of the NINS Institute for Molecular Science, Okazaki, Japan

Many thanks for the warm and kind hospitality of you and your colleagues during my on-site visit to the NINS Institute for Molecular Science on 6–8 March 2023. During my visit I was given in-depth presentations by Prof. Ryota Iino, Director of the Department of Life and Coordination-Complex Molecular Science, and other members of the Department and IMS. I also received presentations from Prof. Masahiro Ehara, Director of the Research Center for Computational Science (RCCS), Prof. Satoshi Kera, Director of the UVSOR Synchrotron Facility, Prof. Koichi Kato, Ex-Director of the Exploratory Research Center on Life and Living Systems (ExCELLS) and Distinguished Professor Makoto Fujita of the Division of Advanced Molecular Science. For reasons of clarity I have organised my report in 4 Sections, plus a Summary at the beginning.

Summary
The Department of Life and Coordination-Complex Molecular Science at IMS is a center of research excellence that is tackling some of the most important and profound challenges in the molecular sciences today. Its success and performance is reflected not only in the outstanding research outputs (in terms of journal publications, invited lectures and prizes) of the current PIs, but also in the remarkable number of high quality scientists that have started their independent careers at IMS and then moved to be highly successful Associate or Full Professors at other universities.

The Institute and Department strengths include that the staff are well motivated and perform at the highest level. The leadership is outstanding. The level of equipment and instrumentation is well above that of many world class laboratories in the USA and Europe. This gives the groups at IMS a significant advantage over competitors worldwide in terms of their ability to tackle the toughest problems in science today. However, the IMS groups are considerably smaller than those of international competitors, which means that they simply do not have the human resource to exploit breakthroughs as quickly or as well as larger competitor groups internationally. A contributing reason for the small group sizes is the available budget for personnel, which is perhaps half that of competitors in the USA and Europe. Another factor may be poor access to the best students for recruitment purposes because of a general lack of integration and cooperation for mutual benefit with universities. A striking weakness in terms of staffing is the lack of diversity in gender at PI level. In my opinion, it is important for IMS, and for the future of Japanese science in general, that this is addressed as quickly as possible.
1. Overall impressions

My overall impression of IMS, and the Department of Life and Coordination-Complex Molecular Science in particular (one of the four Departments of IMS), is overwhelmingly positive: It is an influential and highly respected institute in the field of the molecular sciences. The Department of Life and Coordination-Complex Molecular Science is globally renowned for carrying out high quality innovative research, its strong faculty, an excellent research environment, and collaborations with other institutions and universities, all of which make it a leading centre for research internationally.

2. The role of IMS in the national scientific landscape

The Institute for Molecular Science was founded in 1975. I believe that one reason for establishing national research institutes at that time was to support and supplement the national research effort of universities by being a focal point for ‘big’ facilities that individual universities could neither afford to purchase nor to run. This remains a compelling need today, for example few universities would be able to run a synchrotron. Nevertheless, the scientific era we live in now is very different from the 1970s, and many universities have large instruments and facilities that serve as resources for others researchers in Japan and worldwide. Within this changing scientific climate, research institutions and their position in national and international science strategies benefit from growth and reevaluation of purpose. In particular, the role and interaction of research institutions with other national bodies, such as universities, should evolve. In this regard, I note that IMS has undergone a healthy number of changes in structural organisation over its lifetime, including the establishment of many new, highly successful and internationally important, research centers.

A key part of IMS’s Mission Statement is that it should ‘…enhance the progress of molecular science covering broader research areas via mutual exchange of human resources among all the universities in this country…’: IMS fulfils this role admirably by providing an opportunity for researchers to be fully independent at a much earlier stage (associate professor) than is traditional in Japanese universities. For a dramatic example of the impact that independence at a young age can have in the chemical sciences, one need look no further than the 2021 Nobel Prize in Chemistry, awarded to Ben List and David MacMillan for the development of asymmetric organocatalysis. The two seminal papers that led to that Nobel Prize were the first (List) and second (MacMillan) papers of the recipients as independent PIs. Perhaps because they have no scientific program of their own to build on initially—or perhaps because of the impetuosity of youth(!)—young PIs are often less conservative than more established PIs and more inclined to explore radically new concepts and ideas that can lead to breakthroughs, and even completely new fields of science. The consequences of this aspect of IMS’s employment policy must be taken into account in any objective consideration of the impact and success of IMS.

Since IMS was founded in 1975, more than 60 IMS associate professors have been promoted to full professors or similar positions at other institutions, including the following researchers who are particularly relevant to the research area covered by the Department of Life and Coordination-Complex Molecular Science: Tatsuya Tukuda (Professor, University of Tokyo; https://www.chem.s.u-tokyo.ac.jp/users/chemreact/index-e.html); Takeaki Ozawa (Professor, University of Tokyo; https://analyt.chem.s.u-tokyo.ac.jp/en/); Hirokazu Tada (Professor, Osaka University; http://molelectronics.jp/en/); Hidehiro Sakurai (Professor, Osaka University; https://www-chem.eng.osaka-u.ac.jp/~sakurai-lab/en/index.html); Donglin Jiang (Professor, National University of Singapore; https://blog.nus.edu.sg/chmjd/professor/); and Shigeyuki Masaoka (Professor, Osaka University; http://www.chem.eng.osaka-u.ac.jp/masaoka_lab/english/index.html).
In addition, nearly 130 IMS assistant professors have been promoted to full professors or similar positions at other institutions. Outstanding examples include: Mitsuhiro Shionoya (Professor, University of Tokyo; https://www.chem.s.u-tokyo.ac.jp/~bioinorg/indexE.html); Hiroshi Kitagawa (Professor, Kyoto University; http://kuchem.kyoto-u.ac.jp/osscc/index.html); and Hajime Ito (Professor, Hokkaido University; https://itogrouphp.chem.hokudai.ac.jp/).

These are staggering numbers. Although Japanese universities are increasingly allowing full independence of PIs earlier in careers, I believe that this is still one of the most important factors that makes IMS stand out as an attractive institution for outstanding young researchers wanting to start their independent academic career.

However, the very success of this role of IMS disadvantages the institute in terms of metrics such as citations and international awards. Since promotions in IMS are prohibited, all of your (very successful) young staff have to leave to be promoted elsewhere. It is at the Full Professor stage that one gets the full benefit, in terms of citations, recognition and funding, of having built an internationally important research program. The tremendous success of IMS is thus reflected in these 190(!) staff that have been promoted to positions elsewhere in the 48 years since it was founded. That is, on average, nearly 4 staff members a year for an institution that currently numbers 36 Full, Associate and Project Professors and 40–50 Assistant Professors.

3. Gender imbalance and lack of international diversity at PI level
IMS currently has 18 Full Professors (including Distinguished Professor Fujita), 16 Associate Professors and 2 Project Professors. Of these 36 senior academic staff, just one (Assoc. Prof. Momiyama) is female. This extremely poor gender imbalance at PI level is a weakness for many reasons: First of all it means that IMS is missing out on a huge amount of talent; secondly, it means there is a lack of senior role-models in IMS that would showcase to female young researchers that IMS is well set up for women to succeed in a scientific career. In contrast, the junior positions (PhD and Post-Doctoral Fellows) in all of the research groups I met with had good gender balance (typically 30–50% female). There are no doubt many reasons—historical, cultural, social and practical—that contribute to the gender imbalance at PI level, but it is a problem that I strongly suggest you start solving immediately.

Of course, it would be wrong to suggest that IMS is unique in having a gender imbalance problem; my own Department has only 15 women PIs out of 80 faculty, which is probably typical of UK Chemistry Departments. It is an issue in science academia that many western countries struggled with. My advice is to start by asking female professors and female PhD students what they think are the issues involved and what would make a difference to them. Then it will be up to men and senior leadership to take the lead in implementing solutions that women feel would make a difference. If, for example, young women scientists tell you that the non-promotion of Assistant or Associate Professors within the Institute is an issue because it is desirable to have stable roots for starting or growing a family then, in my view, that rule should be very publicly removed for women scientists. Other ways of supporting women professors, such as giving them a PDR for a year any time they give birth to help them run their group during this important time, should be considered if, again, young female scientists tell you that they are reluctant to pursue academic careers because of the difficulty of juggling a young family with establishing their research program. These are examples of the sort of initiatives that might help make IMS an institute that women PIs really want to join. Let me reiterate that in my opinion the role of men in this should be to put into place initiatives that women say they want; it is not for men to concoct plans that they think women want.
Also on the issue of diversity, although less important, it feels to me like a missed opportunity that all 36 of the professors in IMS are Japanese. There is some international diversity within research groups—Prof. Iino’s group is an excellent example of this—it is at PI level that it is lacking. As with gender, diversity in terms of origins, ethnicity, upbringing and education brings different ways of thinking, not just with regards to how to tackle scientific problems, but also in the way institutes and laboratories are organised and run. Europeans and Americans love Japan: The people, the culture, the country and the food. Although there may be cultural and language issues with attracting outstanding foreign PIs of the quality that would benefit the institute to move full time to Japan, I suggest it would be easy for IMS to attract outstanding foreign PIs to have satellite labs at IMS. Many leading chemists (including Fraser Stoddart, Ben Feringa and myself in the molecular machines field) have satellite labs in China, for example. I believe the Chinese have found that our presence (and that of many others) gives them insight into how leading US and UK scientists think and run their research programs and labs and that has benefitted Chinese science in their ways of thinking and scientific culture. Perhaps this is something that IMS could consider, maybe through participating in or leading bids in the WPI program, which could provide funding for such cross-national appointments.

4. The Department of Life and Coordination—Complex Molecular Science

The Department has 8 research groups, four primarily associated with studies on the molecular basis and mechanisms of biological systems (Iino, Kato, Aono and Nakamura) and four motivated by unsolved problems in chemical synthesis (Uozumi, Kusamoto, Momiyama and Segawa). All of these groups are of very high quality; they tackle important fundamental problems in creative ways and publish their findings in the best international journals.

Prof. Ryota IINO

Professor Iino’s research focuses on the study of biomolecular motors using advanced imaging techniques. He is a world leader in the use of super-resolution microscopy to investigate the operational and design principles of molecular motors. These include the visualisation of fast dynamics of motor-molecules such as V-ATPase, kinesin, chitinase and dynein by single-molecule imaging. In the last few years he has expanded his group’s program to include the development of new cutting-edge single-molecule techniques for angstrom-precision tracking and high-speed tracking. This is a highly competitive area trying to answer profound questions regarding the way that biology works at the molecular level. Recent highlights include “Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V_o and V_i motors,” Proc. Natl. Acad. Sci. USA 119, e2210204119 (2022) and “Combined approach to engineer a highly active mutant of processive chitinase hydrolyzing crystalline chitin,” ACS Omega 5, 26807–26816 (2020).

Prof. Yasuhiro UOZUMI

Professor Uozumi is a highly respected international leader in the development of highly effective heterogeneous catalysts, particularly for applications in green chemistry. In recent years he has developed highly active ppb-catalysts with turnover numbers >3 million for various coupling reactions and developed polymer supported asymmetric Pd-catalysts that work in water. He has recently applied his expertise in polymer supported reagents to photocatalysis in water, bringing a ‘green’ perspective to one of the hottest areas of synthetic organic chemistry today. Recent highlights include “Photocatalytic carbinol cation/anion Umpolung: Direct addition of aromatic aldehydes and ketones to carbon dioxide,” Org. Lett. 23, 7194–7198 (2021) and “Production of bio hydrofined diesel,

Assoc. Prof. Norie MOMIYAMA

Associate Professor Momiyama is well known for her significant, original and important contributions in asymmetric organocatalysis. She continues to use halogen bonding as a recognition element in new organocatalysts and polymer catalysts. She has recently started a highly ambitious program on the digitisation of chemistry which seeks to take organic synthesis to the frontiers of what is chemically possible. Recent highlights include “Three-center-four-electron halogen bond enables non-metallic complex catalysis for Mukaiyama–Mannich-type reaction,” *iScience* **25**, 105220 (2022) and “Chiral counteranion-directed catalytic asymmetric methylene migration reaction of ene-aldimines,” *J. Org. Chem.* **87**, 9399–9407 (2022).

Assoc. Prof. Tetsuro KUSAMOTO

Associate Professor Kusamoto’s group create photofunctions based on stable radicals. These include luminescent systems based on photostable triaryl radicals and magnetoluminescent systems. His group have a series of papers in the top journals in the field, such as *JACS* and *Angewandte Chemie*. Recent highlights include “An open-shell, luminescent, two-dimensional coordination polymer with a honeycomb lattice and triangular organic radical,” *J. Am. Chem. Soc.* **143**, 4329–4338 (2021) and “Radical-based coordination polymers as a platform for magnetoluminescence,” *J. Am. Chem. Soc.* **143**, 5610–5615 (2021).

Assoc. Prof. Yasutomo SEGAWA

Associate Professor Segawa is widely regarded internationally as a rising star in the field of organic chemistry. His research focuses on the development of new synthetic methods and strategies for constructing topologically complex carbon-rich molecules. He has published the synthesis of a series of extraordinary catenanes and knots and Mobius strip molecules. His research achievements have been published in the highest impact, most visible, journals, including *Science, Nat. Chem., Nat. Synth., JACS* and *Chem*. Recent highlights include “Synthesis of a Möbius carbon nanobelt,” *Nat. Synth.* **1**, 535–541 (2022) and “Topological molecular nanocarbons: All-benzene catenane and trefoil knot,” *Science* **365**, 272–276 (2019). In addition, he has started a research program on microcrystal electron diffraction structure determination which offers the potential for revolutionising structure determination of organic molecules.

Assoc. Prof. Akihiko NAKAMURA (cross-appointment)

Associate Professor Nakamura is a cross-appointment with Shizuoka University and his group’s research interests include protein engineering, heterogeneous enzyme catalysis, and single-molecule analysis. His research program is involved in developing and improving plastic degrading enzymes which have the potential to solve critical environmental problems related to plastic degradation. Recent highlights include “Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation,” *ACS Catal.* **11**, 8550–8564 (2021) and “Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellodextrin hydrolases,” *J. Biol. Chem.* **295**, 14606–14617 (2020).
Prof. Koichi KATO (ex-Director of ExCELLS)

The ambitious aims of this group are to understand how chemistry becomes biology, the origin of life. This is one of the contemporary ‘Grand Challenges’ of science, involving chemistry, physics and biology. Professor Kato collaborates with many groups around the world and has been hugely successful in establishing major consortia, such as ExCELLS. His group’s own research program is aimed at answering fundamental questions such as what is the blueprint for protein glycosylation? and what are the design principles for protein assembling systems? Recent highlights include “Key residue for aggregation of amyloid-β peptides,” ACS Chem. Neurosci. 22, 3139–3151 (2022) and “An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase,” Commun. Biol. 5, 676 (2022).

Prof. Shigetoshi AONO

Professor Aono is a bioorganic chemist whose research interests revolve around metalloproteins and sensor proteins. His group are working to establish the protein machinery responsible for the active site assembly and maturation of NiFe-hydrogenases and also the molecular mechanism of O₂ sensing and signal transduction by the HemAT/CheA/CheW complex. Recent highlights include “Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization,” J. Inorg. Biochem. 230 (2022) and “Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival,” Commun. Biol. 4, 467 (2021).

There are a number of successful collaborations between groups in the Department of Life and Coordination-Complex Molecular Science and other groups in IMS that clearly add value: For example, the Uozumi group with Prof. Ehara (Dept. Theoretical Comp. Mol. Sci.); Prof. Momiyama working with Prof. Suzuki (Instrument Center) on the design and understanding of complex catalysts; a series of highly successful collaborations between the Iino group and Prof. Okazaki (Dept. Theoretical Comp. Mol. Sci.) on simulations of chitinase, with Prof. Koga (ExCELLS) and Kosugi (CIMoS) on computational engineering of PET hydrolase and redesigning of V₁-ATPase, and with Profs. Kumagai and Nishida (Mesoscopic) on single protein vibrational spectroscopy; as well as a series of collaborations between the Kato group and various groups that bring both experiment and theory to bear on problems relating to amyloid formation mechanisms.

The quality of equipment in each group’s laboratories in the Department of Life and Coordination-Complex Molecular Science, and in the institute in general, is outstanding and significantly better than almost all university laboratories worldwide. The Segawa laboratories, in particular, are one of the best equipped labs for cutting-edge organic synthesis that I have ever seen. They are better equipped than my own lab, which is one of the best equipped labs in the UK! This gives the groups at IMS a significant advantage over competitors worldwide in terms of their ability to tackle the toughest problems in the molecular sciences today.

However, although they are highly productive, the groups tend to be significantly smaller than that of their international competitors (my own group, for example, is 30–35 researchers, equally split between PhD students and postdoctoral scientists). The small size of the groups in the Department inevitably means that they do not have the person-power necessary to capitalise on conceptual breakthroughs as quickly as others around the world would do.
I think that there are several ways that IMS could consider addressing this issue:

(i) The first is that, in my opinion, there needs to be an increase in budget. I realise that it is always easy to say ‘give more money’ but, in this case, it is clear that the groups are underfunded in terms of personnel by a factor of 2 compared to their international competitors. This is a key disadvantage when one is in competition to find answers to important scientific problems.

(ii) A second approach that might be useful could be to reconsider your relationship with universities. As I noted earlier, you have more and better laboratory equipment than universities, but they have more—and better access to—young researchers in the form of students. I suggest you consider the possibility of having more cross-appointments with universities, perhaps having IMS staff teach courses at the universities (which would give potential PhD students exposure to IMS staff as well as easing teaching loads for staff at universities). In this way universities would benefit by having easier access to more equipment and extra staff who would teach, while IMS would benefit from having better access to a larger pool of potential researchers. However, if this is done, care must be taken to ensure that cross-appointments are done properly. If I recall correctly, the cross-appointment of Prof. Nakamura requires him to teach a full teaching load at Shizuoka University. That appears from the outside to be completely inappropriate; if it is a cross-appointment then I would expect half his salary should be paid by the university (and half by IMS) and he should have, at most, a 50% teaching load and no administration at the university so as to take into account all the additional travel and work he has to do in order to play a substantial role in two locations.

I hope that this short report proves useful to you and your colleagues in thinking about how to continue to develop IMS. It is a truly fantastic institute with excellent scientists doing world class research. It has been a pleasure to visit and interact with such inspiring people, from the young researchers to the thoughtful generous leadership. Thank you for this opportunity.

Best wishes,

David A. Leigh FRS
Royal Society Research Professor & Sir Samuel Hall Chair of Chemistry, University of Manchester, UK
24 April 2023
点検評価と課題
8. 研究施設の現状と将来計画

共同利用設備を充実させ、大学等の共同利用研究者の研究支援を行うことは大学共同利用機関の主要な役目のひとつである。1975年の研究所発足当初から装置開発室と機器センターを設置し、1976年に化学試料室、1977年に極低温センターを設置した。さらに1979年には電子計算機センターに大型計算機を導入し、1983年から極端紫外光実験施設（UVSOR施設）で放射光源装置が運転を開始した。これらの施設では単に設備を設置するだけではなく、共同利用支援業務を滞りなく行うために技術職員を配置した。高度な研究を進めるためには研究開発が不可欠であり、研究職員との密な連携が重要である。

教員の流動性が高い分子科学研究所では、着任後の研究立ち上げスピードの速さが求められる。また、各研究グループサイズが小さいことも補う必要があり、このような観点でも施設を充実させることが重要である。また、分子研転出後もこれらの施設を利用することで研究の活性化を維持することが可能である。研究者が開発した優れた装置を転用後も、共同利用設備として施設の管理下でさらに広くの共同利用に供されるケースもある。このように、研究所にとって施設の充実は、研究職員が流動していくシステムそのものを支援する意味もあり、施設の継続的な運営が重要である。高度な施設運営を維持するために施設の技術職員の技術の向上に努め、絶えず技術レベルの高い人材を確保するように留意している。技術職員が研究所外に出かけその高い技術力で研究支援するなどの技術交流も重要である。

現在、極端紫外光研究施設（UVSOR施設）、計算科学研究センター（組織的には岡崎共通研究施設のひとつ）が大型設備を有し、計画的に高度化、更新を行うことで世界的にトップクラスの共同利用を実施している。国内外の超大型の放射光施設やスーパーコンピュータ拠点との連携を図りつつ、差別化・役割分担を行い、機能性を活かした特徴ある共同利用が進んでいる。機器センター（2007年に旧機器センター、旧極低温センター、旧化学試料室の機能を再構築して設置）は本来の共同利用支援業務を行う一方で、全国規模でナノテクノロジーネットワーク事業や大学連携研究設備ネットワーク事業を推進し、特定分野の重点的な強化、大学等の研究を支えるシステム作りを行ってきた。また、装置開発室は高度な特殊装置・コンポーネント開発にその高い技術力を活かすべく、研究者からの依頼に対応することで共同利用施設としての役目を果たしている。

分子研では、共同利用をより活性化し、大学の研究活動に貢献する施策として、2018年に新しい人事交流制度を開始した。これは、かつて法人化前に運用されていた「流動研究部門」制度を元に、現在の人事制度と我が国が置かれている状況に適応した新たな取り組みである。具体的には、以下の2つの制度を通じて、分子科学分野のトップレベル研究と、研究者層の厚みを増強するための施策を実施している。特別研究部門では、(1) 2023年4月より、分子科学分野において最先端の科学を切り拓く世界的研究者である東京大学の藤田誠卓教授をクロスアポイントメントで分子科学研究所卓越教授として招聘し、研究に専念できる環境を提供する。また、産学連携を進める研究を行っている中村彰明教授（静岡大学大学院農学研究域准教授）が特別研究部門にクロスアポイントメント教員として着任した。

（渡辺芳人）
8-1 極端紫外光研究施設（UVSOR）

8-1-1 はじめに

UVSOR施設は1983年11月10日に「初点」を発してから39年が経過した。その間、2003年度の第一期高度化（低エミッタンス化、直線部増強4→8か所）、2012年度の第二期高度化（TOP-UP運転、挿入光源追加、エミッタンス27→17 nm rad）のように、新規光源開発と先端計測の専門家のコラボレーションにより、UVSORでは2度の光源加速器高度化に成功した。1 GeV以下の低エネルギー放射光施設としては、回折限界光源に迫る世界最高性能を達成し（電子ビーム低エミッタンス）、真空紫外光から軟X線領域をカバーする国際競争力をもつ放射光施設として運用している。国際研究力の維持には高い光源性能に見合う実験設備の整備が不可欠であるが、UVSOR-IIIとして10年目を迎え、全14ビームラインのうち6基の先端計測放射光ビームライン設備が成熟し、主として材料科学、化学、環境エネルギー分野の先端的実験成果の収穫期に入った。またUVSORの高い光源性能とコンパクトな運転体制の特徴を活かした、独自性の高い特徴的放射光研究開発が行われており、新規量子ビーム源の開発や回折限界光源の特性を利用した放射光コヒーレンスの科学も推進している。その他の標準共同利用ビームライン（8基）においても、国際的に唯一無二の可視光から真空紫外光まで連続した波長可変な分光システムが稼働しており、材料開発研究において貴重な成果が発信されている。高度化で生まれ変わった現在のUVSOR-IIIは、別の見方をすれば国内で最も若い放射光施設であり、国際的にも特に10 eV近辺をカバーする真空紫外光領域では希少な第三世代放射光施設で、今後の国際連携の発展が期待されている。また中型放射光施設として建設中の次世代放射光施設NanoTerasuと稼働中の大型放射光施設SPring-8とともに国際的な先端放射光施設としての研究主導が求められる。

先端研究の活動力の維持と同時に、今後の放射光利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。さらに30余年間の放射光の利用において先端分析を利用できるユーザーを育成することや、コミュニティ全般強化へ向けた組織間連携や、未活用分野への支援による研究領域の拡張が重要であり、特に歴史的に放射光利用が普及していない化学・バイオ系への分野展開が国際的な命題である。こうした潜在的な放射光利用者となりうる当該分野を長年にわたり支えてきた分子科学研究所への期待は高く、岡崎三機関として基礎生物学研究所、生理学研究所との連携を深めることで、これからのUVSORが目指すべき方向性と捉えて検討を進めている。
イオ系の実験手順では、放射光を利用した実験の前後の評価や試料調製環境の充実が不可欠である。一方、後者の学術開拓は、高出力かつ安定なレーザー光源技術の進展のみならず、入射加速器への応用のための更なる技術開発が求められ、国内外の多くの専門家との協力体制が必要である。こうした以上の提案を日本学術会議が募集した「未来の学術振興構想」の策定に向けた「学術の中長期研究開拓」、施設計画の提案に対し、UVSOR 将来計画をベースにした提案「複雑系・不均一系の分子ダイナミクスに挑む量子光科学拠点の構築」を提出した。その後、グランドビジョン「量子ビーム」を用いた国際限界の解明にグーループされる予定である。その後も議論が進められているが、各種プロジェクトへの申請に向けた議論が進められている中、バイオ系を中心とした未活用分野への研究展開が検討され、岡崎三機関連携の方向性が論議された。2023 年度からのバイオ系ユーザーの支援を目指した光計測機能強化を目的に掲げ、文部科学省のロードマップ 2023 へ向けた申請準備を開始している。現 UVSOR-III は次施設建設までへの研究活動の持続性を担保することが課題であるが、同時に、次期施設へ繋ぐための軟X線や真空紫外線を用いたバイオ系の新たな研究成果の発信を目指し、着実な需要開拓を目指したい。また、光源グループによる先端的量子光実験環境・設備の継続的な深化も重要で、低エネルギー帯施設における国際的な発信力を強化したい。

8-1-2 光源加速器の現状と将来計画

現在の光源加速器について、従来の 15 〜 20 年の設備更新サイクルを鑑みると、2030 年付近で大規模な更新が想定され、特に建設当初 1983 年来、未更新の基本設備への対応が緊迫した課題である。設備トラブルによる不測の運転停止をさけ、国際的にも希少かつ競争力のある貴重な極端紫外放射光源を安定供給し続けることで、多彩な分野の学術発展に資する大学共同利用機関の使命を果たす必要がある。そのうえ数億円規模の高額設備以外については逐次更新を行ってきているが、過去の履歴から計画的に更新可能な老朽設備（電磁コイル、シンクロコンデンサ、ストレージコンデンサ、クライストロン、シンクロ偏向ダクト真空ベローズの一部）は、今後 10 年間に至る所長裁量経費によりその約 6 割について更新完了させることを決定（2019年度）し、順次進めている。2022年度は電力料金の高騰問題があり節電対策を検討し、昨年度比で同月毎 2〜10% の使用量削減に成功した。電気料の圧縮は一定程度の実行ができたが、予算使途対策としては費用対効果はやや抜本的な解決策とはいえない状況である。次年度に向けて、空調設備をインバーター空冷型への変更を検討している。いずれも水冷型で、現在 7 台の耐年経過による更新時期が間近である。現状は水冷型空調機であるため on/off のスイッチングにおける設備膨張率の影響があり、蓄積リング内における数 10 マイクロメートル程度のビーム軌道の空間変動に効いてくる。ビーム軌道補正により対処しているが、更新により恒温環境になれば精度実験へ向けて高水準の調整が可能と考えている。

一方、開発研究の視点で新規光源探査や量子ビーム開発とその利用にかかわる研究は、今や UVSOR の独創性の代名詞と呼べるもので、多彩な学術利用あるいは産業利用の展開が期待されている。こうした研究は、大型施設では通常の放射光ユーザーのための定常運転への影響があるため困難であるが、小型施設ならではのメリットとして、光査バラメータ操作の自由度が大いに、週末実験などで定期的実験環境が与えられていることがあげられる。2020年度に、平准教授が着任し、パルスガンマ線発生と陽電子消滅によるビーム利用研究を推進している。前述のように特殊運転が必要な実験は、ユーザー利用の無い週末あるいは特定の専用運転週をユーザー利用週の間に設定して運営してきた。今後の需要バランスを鑑みて、ガンマ線利用実験が通常のビームタイムで実施できるように、2022年春に蓄積リングの電子パンチ鉄道を新たに設計し、新軌道で定常運転することに成功した。その他、ここ 1−2 年は、加藤特任教授（クロアポ）らによるタンデムアンプリュータの特性を活用した新開光干渉実験等も行われているが、通常の放射光利用を大きくパラメータが異なるために、他ユーザーの影響がない週末に限定して実施している。アカデ
ミオ全般で人材難が深刻になりつつあるが、助教2名の転出等により加速器関連のスタッフ不足に陥っている。共同研究者であるパワーウーザーに兼任職を依頼することで人的補填とし、特殊運転業務を運用している。安定な加速器運転は全ての放射光利用研究に関わるため、中長期的な持続性担保のために早急にスタッフ補強のための人事を進めたい。

8-1-3 ビームラインと観測系利用状況

ビームライン実験設備については、国際的な10年程度の先端開発研究サイクルに後れを取らぬように、各ビームラインの利用状況と国際動向を踏まえた設備の順次高度化が必要で、分子研予算と外部研究費等により開発研究を積極的に進めている。現在、ビームラインは14基が稼働しており、海外からの第一線の研究者が利用に来るような競争力のあるアンジュレータビームライン6基を中心に実験設備の重点整備を進めている。特に真空紫外分光、光電子分光、軟X線吸収分光は物性・機能研究の点で世界的競争力がある。開発が終了したビームラインからユーザー利用が開始されているが、今後は国際利用率を増加させる方針である。

軟X線BL6Uでは、2020年から立ち上げ中の光電子運動量顕微鏡の調整を進めつつ、デモンストレーション実験を協力研究者により推進している。2022年度に二次元スピン検出ユニットを導入し、スピン分解機能を付加した同顕微鏡装置の最終設備開発が始まった。さらに、低エネルギーVUVのBL7Uの光源をブランチ化し、同顕微鏡に導入する機能を立ち上げ中である。一方、同BL7Uでは、光電子アナライザーの電子捕集レンズ部をディフレクタ機能の追加により更新し、高効率角度分解光電子計測装置の改良に成功した。BL5Uでは、ビームマニュピュレータ機能の導入により、高効率スピン分解光電子計測装置への改良を行い、レジンラメータの調整を進めている。また、いずれも電子構造の大規模な多次元計測の効率化のために、計測自動システムの構築を進めている。

また汎用設備であるベンディングラインにおいても、国際的に唯一無二の波長帯をカバーする光反射・吸収測定設備を提供しており、貴重な材料物性評価の成果が発信され続けている。ベンディングラインは設備の希少性と稼働率を鑑みて将来計画を立て、アンジュレータ光源の先端ビームラインとのバランスをとりつつ運用を継続していく。

2022年度から、絶縁性試料や易光損傷試料系における利用設備を含め、BL4Bにおける有機用角度分解光電子分光エンドステーションによる実験支援を開始した。代わりに既BL2Bにおける光電子分光学系の利用支援は次年度に停止する。将来的には空きスペースを活用し、新しい設備を導入する計画である。なお、結果的にBL4Bは複数の実験設備が併設される農学利用の開発に利用コミュニティが多岐にわたり、磁気円二色性（XMCD）実験や、その他X線吸収分光実験の需要と共に申請競争下に置かれるようになった。審査体制を見直し、各領域毎にこれ３分野の割り当て実験週数を策定し、それぞれの枠内で配分審査を実施することとした。

一方で、小規模施設の運営面の課題として、ビームラインスタッフの増加と技術の伝承が求められる。近年教員の転出や技術職員の定年退職などが相次いでおり、UVSORは組織規模に比して極めて少人数で運営している。UVSORでは、火曜日から金曜日中の48時間（12時間×4日間）に加え、木曜夜間の12時間にも運転を実施し36時間連続したトップアップ運転を実現している（合計60時間／週）。ただし夜間のマシングループの人材を恒常的に配置する余裕がないため「木曜夜間の12時間中にトラブルがあっても補償しない」という運用方針のもと供給を実施している。前月の技術職員の後任として、2021年1月から教員の深夜勤務、準夜勤務を開始した。また週末運転やスタディ運転では、所外のパワーウーザーに兼任職として支援を依頼している。グループ主導の空きポスト人事も平和しているが、スタッフの余力が不十分な状態は解消されておらず、転出等による突発的な業務エフォートの変化に対応することが困難であり、引き続きUVSOR運営スタッフとして適任者が見つからない。採用枠を確保しスタッフとして迎えたい。運営面では後述のように、課題審査システムを抜本的に見直し、スタッフ業務の軽減をはかっている。
8-1-4 中長期計画（次期施設計画,課題審査システム再構築）

2018年度より、UVSOR-IIIの後継となる次期小型放射光施設の建設に関する検討が進められている。2023年度は40周年事業に合わせ、各実験手法を軸として次期施設コンセプトデザインレポートをまとめると予定である。歴史を振り返ると、光科学は光源技術の深化と共に多様な分野へ展開してきたが、まだ多くの未活用分野が残る。特に近年の化学・バイオ系分野の需要の高まりに対応できていない。かつてUVSORでもそうであったように、複雑系の計測は萌芽的に試みられてきたが、当時の技術環境がまだ成功例は十分とは言えない。今後、新たな学術開拓を目指すためには、これまでの易損傷物質への計測技術ノウハウを元にした、放射光施設の支援体制の抜本的な変革が求められる。成熟した各種光源の最適化・安定化を軸に、時代背景に即した使い易いインフラ環境と高度な研究支援体制による光科学の一般化を実現し、岡崎三機関の研究土壌を生かした新たな融合生命分子科学拠点を構築する計画である。

個人研究から協調的研究活動の時代へ適応するための計測技術の発展を元にした先端光科学による新規基盤学術の開拓によるブランド化も有効であるため、一般化と合わせた二面展開による中核研究基盤を構築する。

大小様々な検討会を積み重ねてきたが、11月に行われた第五回次期施設建設検討会において、NanoTerasuとあいちSRセンターとの連携について議論した。あいちSRの産業利用に特化した利用コンセプトは極めて特徴的で、利用率の6割強の民間企業が担う稼働実績は、国際的にみて極めて高く、利用率の6割強を民間企業が担う稼働実績は、国際的にみて極めて高く、同様の目標を掲げている他の施設のロールモデルとなっているほどである。放射光大衆として10か所のリング型施設をもつ我が国の強みが発揮されている点、つまり施設の役割分担が効果的に機能している事例とも言える。中部地区の放射光施設として、産学連携の役割分担を意識し、有効な連携関係を継続していくことが望ましいだろう。例えば産業利用でよりアドバンストな実験が求められる時には、UVSORで発展課題を実施するなど、こうした近隣施設間を橋渡しするような利用支援も有効と思われる。NanoTerasuではコアリションメンバーコンセプトで、同様の民間企業に対する支援環境問題を打破する計画であるが、運転開始からその動向を注視したい。我が国における各施設の将来計画が散見される中、大学共同利用機関の役割やミッションを明確にし、次期施設の詳細について更なる検討を進めていきたい。

一方で、2023年度の申請課題からWebシステムの完全英語対応と、新たな審査体制システムを導入した。次期施設建設の見直しを向けた国際競争力強化のために既存の審査システムの再構築を行うものである。コンセプトは、利用の国際化によって高インパクト成果の件数増加を期待しつつ、未利用分野等のユーザ拡張を目指し、新たな審査システムは、収益型の役割分担の実施を効果的な事例とも言える。中部地区の放射光施設として、産学連携の役割分担を意識し、有効な連携関係を継続していくことが望ましいだろう。例えば産業利用でよりアドバンストな実験が求められる時には、UVSORで発展課題を実施するなど、こうした近隣施設間を橋渡しするような利用支援も有効と思われる。NanoTerasuではコアリションメンバーコンセプトで、同様の民間企業に対する支援環境問題を打破する計画であるが、運転開始からその動向を注視したい。我が国における各施設の将来計画が散見される中、大学共同利用機関の役割やミッションを明確にし、次期施設の詳細について更なる検討を進めたい。
本報告は、UVSOR 施設運営委員会（2018 年度より年 2 回）、UVSOR 将来検討ワーキング・小委員会（2018 年 10 月以降逐次）、UVSOR 利用者懇談会（2018 年度より年 1 回）、国際諮問委員会（2019 年 12 月）、文部科学省各課との意見交換、における意見交換を元に改訂してきたものである（過去リポート参照）。また継続して外国人運営顧問により意見聴取も行われている（分子研リポート 2016 から 2021 参照）。
8-2 機器センター

機器センターは、先端機器の開発・維持・管理・運用、汎用的な物性・分析・分光機器の維持・管理・運用、所員ならびに所外の協力研究・施設利用者への技術支援を主な業務としている。先端機器開発に関しては、研究所内外の共同利用者と協力して、特色ある測定装置の開発とその共同利用を行っている。また、汎用的な化学分析機器、構造解析機器、物性測定機器、分光計測機器、および液体窒素・ヘリウム等の実剤供給装置等の多様な機器の維持・管理を行い、全国の共同利用者が分子科学研究を推進するための研究支援を担っている。一方、大学連携研究設備ネットワーク（設備NW）の幹事機関として、機器センター所有の多くの機器を設備ネットワークに登録・公開し、この事業の運営を主導し事務局を担当している。また、2021年度からは文部科学省受託研究マテリアル先端リサーチインフラ（Advanced Research Infrastructure for Materials and Nanotechnology in Japan, ARIM）事業の「マテリアルの高度循環のための技術」領域のスポーク機関、2022年度からは同事業運営機構横断領域物質・材料合成プロセス技術分野の責任機関として機器共用・民間利用拠点を務めることとなっている。

2022年度の機器センターの人員は以下のようなである。センター長は2018年度から横山利彦が務め、分析チームリーダー・中村敏和（2018-），合成チームリーダー・鈴木敏泰（2019-）、主任研究員・渡辺俊（2020-）の3名が先端的な共同利用を推進している。この3名は、先端的・開発的な共同利用（協力研究並びに施設利用）の推進に加え、俯瞰的視野に立った機器センターの運営、設備の維持・管理・開発・更新を行い、さらには、大学共同利用機関法人としての大学等への組織的な機能強化貢献をミッションとする。専任技術職員は、高山敬史技師、藤原基靖主任技術員、上田正主任技術員、岡野芳則技術員、宮本瑞枝技術員、長尾春代技術員（2023年2月に特任専門員から配置換）の8名が在籍し、ユニット長は総務英則技術推進部長が兼任する体制となっている。また、技術系主任専門員1名（伊木志成子）、技術支援員1名（藤川清江）、事務支援員1名（田中由美子）が配置されている。これに加えて、設備NWとARIMの2事業において、運営マネージャー4名（石山修、中本圭一、太田康仁（2022年5月～）、賀来美恵（2022年5月～））、事務支援員4名（船木弓子、内田真理子（育休中）、石川あずさ（2022年11月まで）、栗田佳子（2022年4月～））が配置されている。

研究所全体として大規模装置を効率的に運用する必要性の高まりを受けて、機器センターは比較的汎用性の高い装置を集中的かつ経常的に管理している。2013年度には、2012年度ナノプラットフォーム補正予算により、マイクロストラクチャー製作装置（マスクレス露光装置、3次元光学プロファイラーシステム、クリーンブース）、低真空分析走査電子顕微鏡、機能性材料バンド構造顕微鏡システム（紫外光電子分光）、X線溶液散乱装置が導入され、マイクロストラクチャー製作装置は装置開発室が管理し、それ以外の3機器は担当教員のもと機器センターが維持・管理・運用し、既に多くの利用がある。2017年度には、他では利用しにくく外部利用頻度の高い極低温・微結晶X線回折の検出器の更新、マトリックス支援レーザー脱離イオン化（MALDI-TOF）質量分析計の新規導入、分光走査熱量計（DSC）、熱重量計（TGA）の新規導入などを行い、2018年度は、光励起状態の時間分解高磁場バルス電子スピノン共鳴測定を可能にするための強度且つミクロ撮像 UIAlertView・OPBシステムを新規導入した。2019年度には、オペランド多目的粉末・薄膜X線回折装置が導入され、さらには2019年度末に最先端の高速原子間力顕微鏡3機器が導入された。さらに、競争資金で購入された汎用的な機器の共有・共同利用機器化が始まり、高性能二重収束質量分析計（所内共通機器、魚住教授より）、ESI-TOF型質量分析装置（所内共通機器、関田卓雄教授より）、電界放出形透過電子顕微鏡（共同利用機器、魚住教授より）が登録されている。2020年度は、老朽化した可視・紫外二色性分散計の設備更新を行い、かつ、新型コロナウイルス感染症対策の2020年度第2次補正予算により400 MHz、600 MHz溶液核磁気共鳴の液体ヘリウム再凝縮器を付加することができた。また、ARIM事業2020年度補正予算によりデータ連携・遠隔操作
機能付電子スピン共鳴装置, 2021年度補正予算により超伝導量子干渉型磁束計（SQUID）が導入され、さらには、2022年度補正予算により核磁気共鳴装置の更新（2024年度末納入予定）。ARIM事業2022年度補正予算による単結晶X線構造解析及び機械自動生成システムの導入,所内予算による600MHz溶液NMRの新規導入（いずれも2023年度末納入予定）と名大からの電子プロープマイクロアナリシス譲渡が進んでいる（2023年度夏頃始動予定）。一方、これまで機器センター（ナノプラットフォーム）で運用されてきた800MHzクライオプローブNMRは2023年度末納入予定。生命創薬授業のEXCELLSに移管されている。

所外委員5名を含む機器センター運営委員会では、協力研究・施設利用の審査を行うほか、共同利用の在り方やセンターの未来計画について、所内外の意見を集約しつつ方向性を定めている。利用状況として、年間200件程度の所外利用があり、共同利用機関としての負担は十分に果たしている。なお、大学共同利用機関法人評価において、所外運営委員を半数以上とすることが求められ、2022年度から所外委員比を増やすこととなった。機器センターは設備NW、ARIM事業推進しつつ、大学共同利用機関法人として大学等の研究者への直接的な研究強化貢献の必要は、大学等への組織的な機能強化貢献にも積極的・具体的に寄与すべきであろう。

国家全体の厳しい財政状況を考慮すると、汎用機器の配置や利用を明確な戦略のもとに進めることは不可欠となる。実際、現在所有の多くの機器は老朽化が進んでいる。所内外の要望と需要を検討し、重点化の方向性と導入優先順位を設け、概算要求のみならず外部資金を積極的に獲得することに努めた結果、電子スピン共鳴、超伝導量子干渉型磁束計、単結晶X線構造解析、高磁場核磁気共鳴、ヘリウム液化機などの更新が行える状況である。今後さらに中長期的にどのような機器ラインアップを維持するかの検討については、次の3つのタイプに階層化することを想定する。

1) 比較的に多数のグループ（特に研究所内）が研究を遂行していく上で不可欠な共通基盤的機器。これらの維持は、特に人事流動の活発な分野において、各グループが類似の装置をそれぞれ新たに用意する必要がない環境作りの面で重要である。一方、使用頻度や維持段階の点で負担が大きいと判断されたものは、定期的に对象とし、所内特定グループや他機関を含めた移設にとどまることも検討する。

2) 当機器センターとしての特色ある測定機器。汎用機器をベースとしつつ改良を加えることによってオリジナル性の高いシステムを開発し、それを共同利用に供する取り組みを強化する。分子科学研究所の特色として「低温」「オペランド」を柱とした分野強化を進める。その際、技術職員が積極的に関与して技術力を高めることが重要であり、主任研究員制度の適用を視野に含める。所外の研究者の要請・提案を取り込みつつ連携して実行するとともに、所内研究者の積極的な関与を求める。当センター内のみならず、UVSORをはじめとする所内センター等と共同して取り組むことも効果的である。所内技術職員の協力協力が技術を支えるのに不可欠であるが、コミュニティ全体から提案を求めることも必要となる。

3) 国際的な水準での先端的機器。分子科学の発展・深化を強力に推進する研究拠点としての分子研の役割を果たす施設として、UVSORや計算科学研究センターと同様に、機器センターも機能する必要がある。高磁場NMR装置やESR装置は、国際的な競争力を有する先端的機器群であり、研究所全体として明確に位置付けを行い、利用・運営体制を整備することによって、このミッションに対応すべきである。国内外からの利用にも対応するため、技術職員には国際性が求められる。2)と同様に、所外コミュニティからの要請・提案と、所内研究者の積極的な関与が必要である。特に、新規ユーザーの開拓は、分子科学の新領域形成へと繋がると期待されるものであり、これまで分子研との繋がりが深くはなかった研究者層・学協会との積極的な連携を模索することにも取り組む。先端的機器は不断の性能更新が宿命であるが、全ての面でトップをたることは不可能であるので、意識して差別化を行い、分子研ならではの機器集合体を構成することに留意する。
2021年度からARIM事業が始動し、分子科学研究所は「マテリアルの高度循環のための技術」領域スポーク機関と運営機構横断領域物質・材料合成プロセス技術分野の責任機関としてマテリアルDXプラットフォーム形成に関与することとなった。このプログラムの主たる目的は、マテリアルデータベースのデータ収集・蓄積、共用プラットフォーム・データプラットフォーム構築、AI等を用いたデータベース利活用などであり、マテリアルの構造・物性計測における測定自動化・遠隔化、マテリアル創成における合成自動化・AI解析等によるハイスループット化も推進していく。

DXは省庁を跨いだ大規模な国家プロジェクトであり、機器センターもその一翼を担う組織として積極的にデータ収集・蓄積さらには特徴ある解析アプリの提供等による利活用を推進していきたい。
8-3 装置開発室

装置開発室は、分子科学分野の研究者と協力し最先端の研究に必要となる装置や技術を開発することと、日常の実験研究において必要となる装置や部品類の設計・製作に迅速に対応する、という二つの役割を担っている。製作依頼件数は年間400件に及ぶ。新しい装置の開発では技術職員が研究者と密接に連携し、また、日常の実験研究で必要となる工作依頼などについては、機械加工技能を持つ技術支援員が中心となり、対応している。

2021年度より新たに有償利用制度を設けることで、分子研外部からの製作・開発依頼受付を持続可能なシステムとして運用開始し、海外からの依頼も含めて対応できる体制を整えつつある。また従来からある施設利用については、他の施設と同様の形で継続している。

装置開発室は大きく機械工作を担当するメカトロニクスセクションと電子回路工作を担当するエレクトロニクスセクションに分かれている。メカトロニクスセクションでは従来の機械加工技術の超精密化に向けた取り組みに加え、近年では、リソグラフィなど非機械加工による超微細加工技術の習得に取り組んでいる。エレクトロニクスセクションでは、高速化や多機能化が進む電子回路の需要にこたえるために、プログラマブル論理回路素子を用いたカスタムICの開発等に取り組んでいる。これに加えて、3Dプリンター、CAMやシミュレーションなどのデジタルエンジニアリングの導入を進めている。

装置開発室の設備については、創設から40年が経過し、老朽化、性能不足、精度低下などが進み、設備の更新は急務となっている。2013年度には、ナノテクノロジープラットフォーム事業の一環として、マイクロストラクチャー製作・評価のための先進設備を導入することができた。また、2019年度には5軸加工機と電子ビームリソグラフィ装置の導入を行った。2020年度は、附属3棟の改修により、工作環境およびクリーンルームの整備を行うこともできた。今後も、装置開発室の将来計画・将来像の検討を進めながら、その方向性を強く意識しつつ、日常の実験研究を支えるための基盤的設備、先端技術習得のための先進設備、双方の更新・導入を進める。また、他機関との連携や、他機関共用設備の利用も積極的に検討する。
8-4 計算科学研究センター

計算科学研究センターは、2000年度に分子科学研究センターから岡崎共通研究施設の計算科学研究センターへの組織改組が行われ、現在は分子科学研究センター、基礎生物学研究所、生理学研究所の3研究所により運営されている。従来の共同利用に加えて、理論、方法論の発展等の研究、さらに、研究の場の提供、ネットワーク業務の支援、人材育成等に取り組んでいる。2022年度においても、計算物質科学スーパーコンピュータ共用事業や各種スクールの開催をはじめとした様々な活動を展開している。ここでは共同利用に関する活動を中心に、特に設備の運用等について記す。

2023年2月現在の共同利用サービスを行っている計算機システムの概要を示す。本システムは、2017年10月から稼働していた旧「高性能分子シミュレータ」を2023年2月に更新した「高性能分子シミュレータ」である。本シミュレータでは、量子化学、分子シミュレーション、固体電子論などの共同利用の多様な計算要求に応えるための汎用性があるばかりでなく、ユーザーサイドのPCクラスタでは不可能な大規模計算を実行できる性能を有する。

高性能分子シミュレータは、主としてHPE製のApolloシリーズで構成される834ノードの共有メモリ型スカラ計算機クラスタであり、全サーバは同一CPU(AMD E7763)、同一OS(Rocky Linux 8.7)を有し、パイナリ互換性を保ち一体的に運用される。システム全体として総演算性能6.68 Pflopsで総メモリ容量224 TBである。主力の演算サーバは、Type Cと呼ぶもので、2.45 GHzのクロック周波数をもつ128コア、256 GBメモリ構成の804台である。仮想ノード単位とコア単位の利用形態のジョブの大半はType Cで実行される。Type Fはメモリを1 TBに強化した14台であり、他はType Cと同一である。多くのメモリを必要とするジョブが仮想ノード単位で実行される。Type Gは1ノードあたり8GPUを有する16台であり、筐体が違うものの他はType Cと同一である。インターネット専用にInfiniBandアーキテクチャを採用し、全サーバを100 Gb/sで接続しており、大規模な分子動力学計算などノードをまたがる並列ジョブを高速で実行することができる。これらのクラスタ演算サーバは、14.8 PBの容量を持つ外部磁気ディスクを共有し、Lustreファイルシステムを構成している。

ハードウェアに関わらず、利用者が分子科学の計算をすぐに始められるようにソフトウェアについても整備を行っている。量子化学分野においては、Gaussian、GAMESS、Molpro、TURBOMOLE、分子動力学分野では、Lammps、GROMACS、Amberなどがインストールされている。これらを使った計算は全体の1/3強を占めている。

共同利用に関しては、2022年度は296研究グループにより、総数1,238名（2023年2月現在）に加え利用者がこれらのシステムを日常的に利用している。近年、共同利用における利用者数が増加傾向にあり、このことは計算科学研究センターが分子科学分野、物性科学分野、生物物理分野において極めて重要な役割を担っており、特色のある計算機資源とソフトウェアを提供していることを示している。最近は、錯体化学分野や有機化学分野など幅広い分野の研究者の利用も増加している。

計算科学研究センターは、国家基幹技術の一つとして位置づけられているスーパーコンピュータ「富岳」成果創出加速プログラム、データ倒出・活用型マテリアル研究開発プロジェクトとも連携を行っている。これら2つの大規模並列計算を志向したプロジェクトを支援し、各分野コミュニティにおける並列計算の高度化へさらなる取り組みを促すこと目的として東北大学金属材料研究所、東京大学物理研究所、自然科学研究機構分子科学研究所が共同で「計算物理科学スーパーコンピュータ共用事業（SCCMS）」を運営しており、2022年度はこれらプロジェクトにコンピュータ資源の一部（10%以下）を提供・協力している。さらに、ハード・ソフトでの協力以外にも、分野振興および人材育成に関して、計算科学研究センター研究施設のワークショップ「複雑電子状態の理論・計算科学」と2つのスクール「第12回量子化電子化スクール」と「第16回分子シミュレーションスクール—基礎から応用まで—」を開催した。また、
東北大学金属材料研究所、東京大学物性研究所、大阪大学ナノサイエンスデザインセンターと協力し、我が国の最先端の計算物質科学研究技術を振興し、世界最高水準の成果創出と、シミュレーション技術、材料情報科学技術の社会実装を早期に実現するため、計算物質科学協議会を設立・運営し、分野振興を行っている。

2022年度 システム構成
高性能分子シミュレータシステム 6.68 PFlops

<table>
<thead>
<tr>
<th>クラスタ演算サーバType C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>型番：HPE Apollo2000 Gen 10 Plus</td>
<td></td>
</tr>
<tr>
<td>OS ：Linux</td>
<td></td>
</tr>
<tr>
<td>コア数：102,912 コア（128 コア×804 ノード）2.45 GHz</td>
<td></td>
</tr>
<tr>
<td>総理論性能：4,034 TFlops（5,017.6 GFlops × 804 ノード）</td>
<td></td>
</tr>
<tr>
<td>総メモリ容量：206 TB（256 GB × 804 ノード）</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>クラスタ演算サーバType F（メモリ強化）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>型番：HPE Apollo2000 Gen 10 Plus</td>
<td></td>
</tr>
<tr>
<td>OS ：Linux</td>
<td></td>
</tr>
<tr>
<td>コア数：1,792 コア（128 コア×14 ノード）2.45 GHz</td>
<td></td>
</tr>
<tr>
<td>総理論性能：70 TFlops（5,017.6 GFlops × 14 ノード）</td>
<td></td>
</tr>
<tr>
<td>総メモリ容量：14 TB（1024 GB × 14 ノード）</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>クラスタ演算サーバType G（演算性能強化）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>型番：HPE Apollo6500 Gen10 Plus</td>
<td></td>
</tr>
<tr>
<td>OS ：Linux</td>
<td></td>
</tr>
<tr>
<td>コア数：2,048 コア（128 コア×16 ノード）2.45 GHz</td>
<td></td>
</tr>
<tr>
<td>GPU：NVIDIA A100 NVLink</td>
<td></td>
</tr>
<tr>
<td>総理論性能：80 TFlops（5,017.6 GFlops × 16 ノード）+ 2,496 TFlops（19.5 TFlops × 128 ノード）</td>
<td></td>
</tr>
<tr>
<td>総メモリ容量：14 TB（1024 GB × 14 ノード）</td>
<td></td>
</tr>
</tbody>
</table>

外部磁気ディスク装置

| 型番：HPE ClusterStor E1000 | |
| 総ディスク容量：14.8 PB | |

インターネット接続装置

| 型番：NVIDIA Mellanox InfiniBand Switch | |

フロントエンドサーバ

型番：HPE ProLiant DL385 Gen10 Plus v2	
OS ：Linux	
総メモリ容量：1 TB（256 GB × 4 ノード）	

運用管理クラスタ

型番：HPE ProLiant DL360 Gen10 Plus	
OS ：Linux	
総メモリ容量：1.1 TB（192 GB × 6 ノード）	
8-5 生命創成探究センター

生命創成探究センター（Exploratory Research Center on Life and Living Systems = ExCELLS）は、自然科学研究機構の更なる機能強化を目指すために、岡崎統合バイオサイエンスセンターを中核として機構の組織を再編・統合して2018年4月に設立された機能強化組織である。本センターでは、「生きているとは何か？」という人類の根源的な問いの解明に向けて、生命の仕組みを観察する新たな技術を開発するとともに、蓄積されていく多様な情報の中に隠されている意味を読み解き、さらに合成・構成的アプローチを通じて生命の基本情報の重要性を検証する活動を行っている。こうした「みる・よむ・つくる」のアプローチを基軸に、極限環境生命の研究者とも協力しながら異分野融合型の研究を進め、生命の設計原理を探究する。この目的のもとに、国内外の大学・研究機関の連携によりコミュニティ横断型の共同利用・共同研究を推進する。

2022年度を迎えるにあたり、ExCELLS創設から4年間の基盤整備期間において整えた研究体制をさらに発展させていくために、新たに先端共創プラットフォーム及び連携強化プラットフォームを始動した。この2つのプラットフォームにより、国内外の大学・研究機関との共同利用・共同研究を一層強化するとともに、産業界との共創の推進も目指している。

先端共創プラットフォームでは、センターに所属する教員と外部の研究機関が一体となって研究チームを構成し、設定された研究課題に共創的に取り組むExCELLSプロジェクト研究を実施する。その第一弾として、2022年9月から「物質−生命の境界探査」プロジェクトを開始した。本プロジェクト研究では、ExCELLSの研究者が中心となって進める8つのサブチームと、外部の大学の研究者から提案された研究課題を進める4つのサブチームとが互いに共創しながら、生命機能を維持するために必要となる、本質的あるいは最小の機構や原理を解き明かすために、極限環境に生きる生物、ウイルス等における生物間相互作用や環境応答に関する分子複合体の形態・機能・動態を観測し、物質−生命の境界の体系的理解を目指す研究を実施している。

連携強化プラットフォームでは、国内外の大学・研究機関との組織間のネットワークの強化を図り、連携構築を戦略的に推進している。糖鎖生命科学ユニットでは、共同利用・共同研究拠点である「糖鎖生命科学連携ネットワーク型拠点（J-GlycoNet）」の活動を東海国立大学機構糖鎖生命科学連携ネットワーク型拠点と連携して進めていく。さらに、このネットワーク型拠点を基盤として、文部科学省・大规模学術フロンティア促進事業「ヒューマングライコームプロジェクト」の本格始動に向けての準備を進めている。この活動を強化する目的で、創成研究領域に糖鎖構造機能解析グループを新規に立ち上げた。一方、先端創薬ユニットでは、文部科学省・先端研究基盤共用促進事業（先端研究設備プラットフォームプログラム）NMRプラットフォームの活動を分子科学研究所より引き継ぐとともに、日本医療研究開発機構生命科学・創薬研究支援基盤事業（BINDS）の活動を開始し、名古屋市立大学の創薬基盤科学技術開発研究拠点とも連携して、先端的に創薬基盤技術等の創出を目指す活動に取り組んでいる。

これらの連携活動を通じ、共同利用・共同研究拠点やMOU締結先研究機関等との連携の強化を図るため、研究連携推進室を改組して研究戦略室を新たに設置した。

2022年度も前年度に引き続き、本センター以外の研究機関に所属する複数の研究者が研究グループを構成したうえで、新規な研究手法・測定手法の開発を通じて分野横断的な研究を推進する連携研究グループの活動、並びに機構外の研究者がセンター内の複数のグループとともに異分野融合研究に取り組むExCELLS課題研究（一般・シーズ発掘）を実施した。また、2023年2月には「細胞のまるごとモデリング」を目指す連携研究グループ細胞シミュレーション
研究グループを新規に立ち上げた。

一方、極限環境生生命探査室では深海、地下、極地、大気圏外などにおける生命体の活動を探査・解析することを目指し、生命の始原形態と環境適応戦略を理解する研究を実施する。海洋研究開発機構と連携した深海・地下生命研究グループ、慶應義塾大学先端生命科学研究所以及連携した極限環境耐性研究グループと極限環境生命分子研究グループ、物質-生命境界領域研究グループが活動している。2022年度は、超高解像度クライオ電子顕微鏡及び800MHz溶液NMR装置を活用した共同利用研究を開始した。

異分野融合研究を推進するためのセミナーや研究会も活発に行ったり、海外の研究者との学際的交流を企図したシンポジウムも開催している。分野横断型の研究集会（ExCELLSシンポジウム）や若手が主体的に企画運営する研究集会（ExCELLS若手交流リトリート）をオンライン開催し、海外の研究者との研究交流を図った。また、学術交流協定を締結しているアカデミアシナニカ（台湾）の研究者との共同利用研究を実施した。デンマーク政府が支援するInternational Network Programに基づき、Aarhus UniversityのInterdisciplinary Nanoscience Center（iNANO）から2名の研究者を迎え、分子研とExCELLSの共催でiNANO-IMS-ExCELLS Interdisciplinary Nanoscience Joint Meetingを開催した。デンマークと日本の学術交流の発展に向けて、iNANOと分子研・ExCELLSの研究活動紹介と今後の共創活動に関する意見交換を行った。

分子科学研究所を兼務している教員のうち、青野重利教授が副センター長をとめるとともに金属生命科学研究グループを主宰し、加藤晃一教授が研究戦略室長をとめるとともに生命分子動秩序創発研究グループと極限環境生命分子研究グループ、奥村久士准教授が生命分子動態シミュレーション研究グループ、古賀信康教授が生命分子創成研究グループをそれぞれ主宰している。
9. 資 料

9-1 歴代所長

初 代 赤松 秀雄（1975.4.22 ～ 1981.3.31）
第二代 長倉 三郎（1981.4.1 ～ 1987.3.31）
第三代 井口 洋夫（1987.4.1 ～ 1993.3.31）
第四代 伊藤 光男（1993.4.1 ～ 1999.3.31）
第五代 茅 幸二（1999.4.1 ～ 2004.3.31）
第六代 中村 宏樹（2004.4.1 ～ 2010.3.31）
第七代 大峯 巖（2010.4.1 ～ 2016.3.31）
第八代 川合 眞紀（2016.4.1 ～ 2022.3.31）
第九代 渡辺 芳人（2022.4.1 ～ ）
9-2 運営顧問（2004 〜）

2004年度以前は評議員による諮問を行った。

<table>
<thead>
<tr>
<th>姓氏</th>
<th>職名</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>加藤 伸一</td>
<td>豊田中央研究所代表取締役</td>
<td>04.5.19 ~ '10.3.31</td>
</tr>
<tr>
<td>小間 篤</td>
<td>(高エネルギー加速器研究機構理事物質構造科学研究所長)</td>
<td>04.5.19 ~ '06.3.31</td>
</tr>
<tr>
<td>士屋 莊次</td>
<td>((台湾)国立交通大学講座教授，東京大学名誉教授)</td>
<td>04.5.19 ~ '10.3.31</td>
</tr>
<tr>
<td>益田 隆司</td>
<td>電気通信大学長</td>
<td>04.5.19 ~ '06.3.31</td>
</tr>
<tr>
<td>江崎 信芳</td>
<td>京都大学化学研究所長</td>
<td>06.4.1 ~ '08.3.31</td>
</tr>
<tr>
<td>野口 宏</td>
<td>中日新聞編集局文化部長</td>
<td>06.4.1 ~ '08.7.31</td>
</tr>
<tr>
<td>時任 宣博</td>
<td>京都大学化学研究所長</td>
<td>08.4.1 ~ '10.3.31</td>
</tr>
<tr>
<td>田中 宏明</td>
<td>中日新聞編集局文化部長</td>
<td>08.8.1 ~ '10.3.31</td>
</tr>
<tr>
<td>齊藤 軍治</td>
<td>名城大学教授</td>
<td>13.4.1 ~ '16.3.31</td>
</tr>
<tr>
<td>廣田 襄</td>
<td>京都大学名誉教授</td>
<td>13.4.1 ~ '16.3.31</td>
</tr>
<tr>
<td>増原 宏</td>
<td>(台湾)国立交通大学講座教授</td>
<td>13.4.1 ~ '16.3.31</td>
</tr>
<tr>
<td>菲池 昇</td>
<td>豊田中央研究所代表取締役所長</td>
<td>16.4.1 ~ '23.3.31</td>
</tr>
<tr>
<td>桜間 明</td>
<td>浜松ホトニクス代表取締役社長</td>
<td>16.4.1 ~ '20.3.31</td>
</tr>
<tr>
<td>滝川 仁</td>
<td>東京大学物性研究所所長</td>
<td>18.3.31 ~ 東京大学物性研究所教授</td>
</tr>
<tr>
<td>松本 吉泰</td>
<td>京都大学教授</td>
<td>18.3.31 ~ 豊田理化学研究所常勤フェロー</td>
</tr>
<tr>
<td>長我部 信行</td>
<td>日立製作所ライフ事業統括本部企画本部長兼ヘルスケアビジネスユニットチーフエグゼクティブ</td>
<td>20.4.1 ~ '23.3.31</td>
</tr>
</tbody>
</table>
9-3 外国人運営顧問（2004～）

2004年度以前は外国人評議員による諮問を行った。

FLEMING, Graham R.（米国カリフォルニア大学バークレー校教授）'04.5.19 ～ ’05.3.31
JORTNER, Joshua（イスラエルテルアビブ大学教授）'04.5.19 ～ ’05.3.31

NORDGREN, Joseph（スウェーデンウプサラ大学教授）'05.4.1 ～ ’07.3.31
CASTLEMAN, A. Worford Jr.（米国ペンシルバニア州立大学教授）'05.4.1 ～ ’07.3.31

MILLER, William H.（米国カリフォルニア大学バークレー校教授）'07.4.1 ～ ’09.3.31
LAUBEREAU, Alfred（ドイツミュンヘン工科大学教授）'07.4.1 ～ ’09.3.31

STACE, Anthony John（英国ノッティンガム大学教授）'09.4.1 ～ ’11.3.31
SAUVAGE, Jean-Pierre（フランスストラスブール大学教授）'09.4.1 ～ ’11.3.31

WOLYNES, Peter（米国ライス大学教授）’11.4.1 ～ ’13.3.31
BERRY, Rechard Stephen（米国シカゴ大学名誉教授）’11.4.1 ～ ’12.3.31

WALMSLEY, Ian A.（英国オックスフォード大学副学長）’12.4.1 ～ ’15.3.31
O’HALLORAN, Thomas V.（米国ノースウェスタン大学教授）’13.4.1 ～ ’15.3.31

NAAMAN, Ron（イスラエルワイツマン科学研究所教授）’15.4.1 ～ ’17.3.31
ROSSKY, Peter J.（米国ライス大学自然科学研究所所長・教授）’15.4.1 ～ ’17.3.31

UMBACH, Eberhard（ドイツミュンヘン国立科学アカデミー理事, カールスルーエ工科大学教授）’17.4.1 ～ ’20.3.31
LIST, Benjamin（ドイツマックス・プランク石炭研究所所長）’17.4.1 ～ ’20.3.31

MICHL, Josef（米国コロラド大学ボルダー校教授）’20.4.1 ～ ’22.3.31
TANG, Ching Wan（香港科技大学教授）’20.4.1 ～ ’22.3.31

WEIDEMÜLLER, Matthias（独国ルブレヒト・カール大学ハイデルベルク副学長）’22.4.1 ~
LEIGH, David A.（英国王立協会特任教授、英国マンチェスター大学サー・サミュエル・ホール化学教授）’22.4.1 ～
9-4 運営会議委員（2004 〜）

1975 〜 1981 年は運営に関する委員会委員
1981 〜 2004 年は運営協議員による諮問を行った。

◎ 議長
（副） 副議長

<table>
<thead>
<tr>
<th>氏名・所属（当時）</th>
<th>第1期</th>
<th>第2期</th>
<th>第3期</th>
<th>第4期</th>
<th>第5期</th>
<th>第6期</th>
<th>第7期</th>
<th>第8期</th>
<th>第9期</th>
<th>第10期</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿久津 秀雄</td>
<td>阪大たんぱく質研所長</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阿波賀 邦夫</td>
<td>名大学院教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>太田 信廣</td>
<td>北大電子科教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加藤 隆子</td>
<td>核研研究・企画情報センター教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柳 茂好</td>
<td>京大工教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>田中 龍一郎</td>
<td>広大院教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>寺嶋 正秀</td>
<td>千葉大院自然教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>西川 恵子</td>
<td>東京工教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>藤田 慎</td>
<td>東北大学教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前川 憲通</td>
<td>高専共同研究教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>宇理須 恒雄</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小川 琢治</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北川 稔三</td>
<td>分子研教授(岡崎統合バイオ)</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関本 裕己</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小杉 信博</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小林 速男</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大森 見试</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>田中 晃二</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>永瀬 茂</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>西 信之</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平田 文男</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>松本 吉泰</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>橋山 利彦</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>藤野 久彌</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>齊藤 真司</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大島 康裕</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚住 泰広</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>青野 重利</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加藤 晃一</td>
<td>分子研教授</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氏名・所属（当時）</td>
<td>第1期</td>
<td>第2期</td>
<td>第3期</td>
<td>第4期</td>
<td>第5期</td>
<td>第6期</td>
<td>第7期</td>
<td>第8期</td>
<td>第9期</td>
<td>第10期</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>加藤 政博</td>
<td>分子研教授</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山本 浩史</td>
<td>分子研教授</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>秋山 則志</td>
<td>分子研教授</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>瀬 謙明</td>
<td>東工大院理工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加藤 昌子</td>
<td>北大理院教授</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関谷 博</td>
<td>九大院理教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中嶋 敦</td>
<td>慶應大理工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山下 晃一</td>
<td>東大院工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>江幡 孝之</td>
<td>広大院理教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鶴原 久典</td>
<td>名大理院教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高野 喜代一</td>
<td>神戸大院理名誉教授</td>
<td>〇(副)人</td>
<td>〇(副)人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山下 正廣</td>
<td>東北大院理教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>渡辺 芳人</td>
<td>名大理総長、教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山崎 純子</td>
<td>熊本大院薬教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上村 大祐</td>
<td>神奈川大理教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山内 隆</td>
<td>東大理院教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>森 錦彦</td>
<td>東工大院理工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>田 達哉</td>
<td>東大理院教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>朝倉 清高</td>
<td>北大触媒セ教授</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>神倉 秀樹</td>
<td>名大理工教授</td>
<td>〇</td>
<td>〇</td>
<td>〇(副)人</td>
<td>〇(副)人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>河野 裕彦</td>
<td>東北大院理教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>寺崎 亨</td>
<td>九大院理教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水谷 泰久</td>
<td>阪大理院教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大西 洋</td>
<td>神戸大院理教授</td>
<td>〇共</td>
<td>〇共</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鈴木 啓介</td>
<td>東工大院理工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高田 彰二</td>
<td>京大理院教授</td>
<td>〇</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>田原 太平</td>
<td>理研主任研究員</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>村 村果</td>
<td>東大理性研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>有賀 哲也</td>
<td>京大理院教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>米田 忠弘</td>
<td>東北大多元研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高原 淳</td>
<td>九大先導研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>西原 寛</td>
<td>東大理院教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>山口 茂弘</td>
<td>名大トランス研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>孫成 智</td>
<td>分子研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鹿原田一司</td>
<td>東大院工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上原 幹子</td>
<td>理研主任研究員</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷村 吉隆</td>
<td>京大理院教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中村 保一</td>
<td>早稲田太理工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>藤井 綱功</td>
<td>東大工科創成院教授</td>
<td>〇共</td>
<td>〇共</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>江原 聡</td>
<td>分子研教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>秋吉 一成</td>
<td>京大院工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>忍久保 洋子</td>
<td>名大院工教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>芳賀 正明</td>
<td>中央大理工名誉教授</td>
<td>〇人</td>
<td>〇人</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氏名・所属（当時）</td>
<td>第1期</td>
<td>第2期</td>
<td>第3期</td>
<td>第4期</td>
<td>第5期</td>
<td>第6期</td>
<td>第7期</td>
<td>第8期</td>
<td>第9期</td>
<td>第10期</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>福井 賢一</td>
<td>阪大院基礎工教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>村越 敬</td>
<td>北大院理教授</td>
<td>○(副)</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>飯野 亮太</td>
<td>分子研教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>石崎 章仁</td>
<td>分子研教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>岩佐 義宏</td>
<td>東大院工教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>高橋 聡</td>
<td>東北大多元研教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>唯 美津木</td>
<td>名大物理国際研教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
<tr>
<td>真船 文隆</td>
<td>東大院総合文化教授</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
<td>○人</td>
</tr>
</tbody>
</table>

第1期：'04.4.1～'06.3.31
第2期：'06.4.1～'08.3.31
第3期：'08.4.1～'10.3.31
第4期：'10.4.1～'12.3.31
第5期：'12.4.1～'14.3.31
第6期：'14.4.1～'16.3.31
第7期：'16.4.1～'18.3.31
第8期：'18.4.1～'20.3.31
第9期：'20.4.1～'22.3.31
第10期：'22.4.1～'24.3.31
第3期中期目標期間に係る業務の実績に関する報告書

令和4年6月

大学共同利用機関法人
自然科学研究機構
【目次】
○ 法人の概要 ... 1
○ 全体的な状況 ... 16
○ 項目別の状況 ... 21
Ⅰ 業務運営・財務内容等の状況 21
 (1) 業務運営の改善及び効率化に関する目標 21
 ① 組織運営の改善に関する目標 21
 ② 教育研究の見直しに関する目標 24
 ③ 事務等の効率化・合理化に関する目標 26
 (1) 業務運営の改善及び効率化に関する特記事項 27
 (2) 財務内容の改善に関する目標 29
 ① 外部研究資金、寄附金その他の自己収入の増加に関する目標 29
 ② 経費の抑制に関する目標 30
 ③ 資産の運用管理の改善に関する目標 31
 (2) 財務内容の改善 ... 32
 (3) 自己点検・評価及び当該状況に係る情報の提供に関する目標 33
 ① 評価の充実に関する目標 33
 ② 情報公開や情報発信等の推進に関する目標 35
 (3) 自己点検・評価及び情報提供 36
 (4) その他業務運営に関する重要目標 37
 ① 施設設備の整備・活用等に関する目標 37
 ② 安全管理に関する目標 38
 ③ 法令遵守等に関する目標 39
 (4) その他の業務運営 ... 40
 Ⅱ 予算（人件費の見積もりを含む。）、収支計画及び資金計画 42
 Ⅲ 短期借入金の限度額 .. 42
 Ⅳ 重要財産を譲渡し、又は担保に供する計画 42
 Ⅴ 償余金の便用 .. 43
 Ⅵ そ の 他 1 施設・設備に関する計画 44
 Ⅶ そ の 他 2 人事に関する計画 46
○ 法人の概要

(1) 現況
 ① 法人名
 大学共同利用機関法人自然科学研究機構
 ② 所在地
 法人の本部 東京都三鷹市
 大学共同利用機関
 国立天文台 東京都三鷹市
 核融合科学研究所 岐阜県土岐市
 基礎生物学研究所 愛知県岡崎市
 生理学研究所 愛知県岡崎市
 分子科学研究所 愛知県岡崎市
 大学共同利用機関
 国立天文台 東京都三鷹市
 核融合科学研究所 岐阜県土岐市
 基礎生物学研究所 愛知県岡崎市
 生理学研究所 愛知県岡崎市
 分子科学研究所 愛知県岡崎市
 ③ 役員の状況
 機構長 小森 彰夫（平成 28 年 4 月 1 日～令和 4 年 3 月 31 日）
 理事数 5 (2) 人
 監事数 2 (1) 人
 ※（ ）は非常勤の数で、内数（国立大学法人法第 24 条第 1 項及び第 2 項）
 ④ 大学共同利用機関等の構成
 大学共同利用機関
 国立天文台
 核融合科学研究所
 基礎生物学研究所
 生理学研究所
 分子科学研究所
 研究施設等
 国立天文台
 水沢 VLBI 観測所、野辺山宇宙電波観測所、三鷹地区太陽観測施設、
 大学共同利用機関
 国立天文台
 核融合科学研究所
 基礎生物学研究所
 生理学研究所
 分子科学研究所
 研究施設等
 国立天文台
 水沢 VLBI 観測所、野辺山宇宙電波観測所、三鷹地区太陽観測施設、
(2) 法人の基本的な目標等

大学共同利用機関法人自然科学研究機構（以下「本機構」という。）は、宇宙、エネルギー、物質、生命等に関わる自然科学分野の拠点的研究機関を設置・運営することにより国際的・先端的な研究を進めるとともに、本機構が設置する各大学共同利用機関（以下「各機関」という。）の特色を活かしながら、さらに各々の分野を超え、広範な自然の構造と機能の解明に取り組み、自然科学の新たな展開を目指して新しい学問分野の創出とその発展を図るとともに、若手研究者の育成に努める。また、大学共同利用機関としての特性を活かし、大学等との連携の下、我が国の大学の自然科学分野を中心とした研究力強化を図る。これらのミッションを踏まえ、特に第3期中期目標期間においては、機構長のリーダーシップの下、以下の組織改革及び研究システム改革を通じて、機能強化を強力に推進する。

組織改革については、機関の枠を超え、異分野連携による新分野の創成を恒常的に行う新分野創成センターの組織再編、既存機関とは独立した国際的科学の創設、研究推進戦略会議における機能強化の方針及び資源再配分等の組織改革の方針に基づく教育研究組織の再編等を行う。

研究システム改革については、本機構の行う公募型の共同利用・共同研究の申請から審査・採択、成果報告・分析までを統合的に管理するシステム（自然科学共同利用・共同研究統括システム）を整備して、それらの成果の分析評価を行うとともに、機関の枠を超え、機構全体として異分野融合研究が自然に行える研究体制を構築する。また、本機構と各大学との緊密な連携体制の下で、大学の各分野の機能強化に貢献する新たな仕組み（自然科学大学間連携推進機構）を構築する。さらに、柔軟な雇用制度（多様な年俸制、混合給与）の導入等の人事・給与システム改革を通じて若手研究者の育成、女性研究者の支援、外国人研究者の招へいに取り組む。

これら2つの改革を着実に推進するため、本機構のIR（Institutional Research）機能を整備するとともに、これら第3期中期目標期間における特色ある改革の問題点や課題を内部的に自己点検し、それを受けた改革の効果について外部評価を受ける。また、研究活動における不正行為及び研究費の不正使用等のコンプライアンスの諸課題についても機構全体で包括的かつ横断的に取り組む。
(3) 法人の機構図
組織図（法人全体）

平成27年度
組織図（法人全体）

自然科学研究機構

令和3年度
組織図（法人全体）
平成27年度 事務組織図（事務局）

令和3年度 事務組織図（事務局）
平成27年度 組織図（国立天文台）

自然科学研究機構

令和3年度 組織図（国立天文台）

センター
平成27年度 組織図（生理学研究所）

令和3年度 組織図（生理学研究所）
平成27年度 組織図（分子科学研究所）

令和3年度 組織図（分子科学研究所）
平成27年度 組織図（新分野創成センター）

運営委員会

センター長

プレインサイエンス研究分野

イーディングサイエンス研究分野

新分野探索室

平成30年度 組織図（新分野創成センター）

運営委員会

センター長

東部先端科学研究分野（NEIS B-）

プラネタリオ研究分野（NEIS A-）

新分野探索室

令和3年度 組織図（アストロバイオロジーセンター）

運営委員会

センター長

東部先端科学プロジェクト室

宇宙生命科学プロジェクト室（NEIS A-）

アストロバイオロジー展望開発室
資料333

平成27年度 該当なし

令和3年度 組織図（生命創成研究センター）

令和3年度 組織図（国際連携研究センター）
○ 全体的な状況
自然科学研究機構（以下「機構」という。）は、学術の大型プロジェクト研究を牽引する国立天文台、核融合科学研究所と、基礎科学の最先端研究を牽引する基礎生物学研究所、生理学研究所、分子科学研究所と、性格の異なる研究手法をとる機関を包含するところに特色がある。それらの機能の COE として、大学共同利用機関の特徴を活かし世界最高水準の学術的成果を上げてきた。
こうした特徴を活かし、機構は第3期中期目標として、
① 宇宙、エネルギー、物質、生命等に関わる自然科学分野の拠点的研究機関を設置・運営することにより国際的・先導的な研究を進める
② 機構が設置する各大学共同利用機関（以下「各機関」という。）の特色を活かしながら、さらに各々の分野を超えて広範な自然の構造と機能の解明に取り組み、自然科学の新たな展開を目指して新しい学術分野の創出とその発展を図る
③ 若手研究者の育成に努める
④ 大学共同利用機関としての特性を活かし、大学等との連携の下、我が国の大学の自然科学分野を中心とした研究力を強化を図る
ことを主な柱とし、これらを達成するための中期計画を策定し実行した。

＜組織改革＞

●運用・経営マネジメント組織の改革
平成28年度に機構長の下に執行部及び機関の長・センター長からなる「研究基盤戦略会議」を新たに設置し、従来の研究教育組織だけでなく、運用・マネジメントを担う組織の組織改革も実施した。機構における機能強化の方針や資金再配分等の組織改革の方針を議論し、研究組織の再編等を強力に進めるとともに、研究所の枠を超えた共同利用・共同研究、異分野融合・新分野創成を積極的に推進した。特に、研究所間の本部と連携を強化し、共同利用・共同研究室を設置し、大学共同利用機関の特徴を活かし、大学等との連携の下、異分野の枠を超えた共同利用・共同研究を積極的に行うことを目的に、新分野創成センターを刷新し、新たに2つの研究分野（「先端科学」「プラズマバイオ」）を平成30年度に立ち上げた。

●アストロバイオロジーセンターの発展：
異分野研究に関する「戦略性が高く意義のある目標・計画」の一つとして掲げた機構直轄の「アストロバイオロジーセンター」については、クロスアポイントメント制度を活用し国内外から優秀な研究者を雇用して研究体制を構築（センター長を東京大学とのクロスアポイントメントで迎える）するとともに、令和3年度に外国人特任助教を新規に採用した。これにより、異分野研究の世界的ネットワークの構築を図り、幅広い国際との共同研究を展開し、我が国におけるアストロバイオロジー分野の拠点として発展させた。

●生命創成探究センター（ExCELLS）の設置：
分野や機関の枠を超えた融合研究を行うため、基礎生物学研究所、生理学研究所、分子科学研究所（以下「岡崎3機関」という。）の共通施設「岡崎統合バイオサイエンスセンター」（以下「統合バイオ」という。）を設置のため、スクラップ＆ビルトし、平成30年度に新たな生命創成探究センター（ExCELLS）を設置した。統合バイオでは行わなかった一般的な共同利用・共同研究の下、ExCELLS に特徴的な共同研究を開始し、ExCELLS などを通じての国際的なネットワークの構築を図り、幅広い国際との共同研究を展開し、我が国における生命創成探究センターの拠点として発展させた。

自然科学研究機構
を開催し、国際研究交流を図った。また、国内連携活動としては、令和2年度に宇宙航空研究開発機構（JAXA）等との共同プロジェクトにより、極限環境生命探査室の活動をより一層推進した。さらに、機構外の研究機関との連携を通じた極限環境生命探査室の活動の一層の推進も図った。センター内外の若手育成の取り組みとしては、若手が主体的に企画運営する研究集会（ExCELLs 若手交流リトリート）を実施し、若手研究者の育成と研究者コミュニティの形成を図った。

●国際連携研究センター（IRCC）の新設：
飛躍的な国際化促進のため、平成30年に国際連携研究センター（IRCC）を新設した。従来の国際共同研究とは異なり、国外2か国にブランチを設置し、設置先の海外機関と共同で、異分野融合的戦略目標を定め、共同国際公募・選考による人事、内外両機関による研究指導など、一体となって運用する体制を整えた。米国プリンストン大学やドイツ・マックスプランク協会と連携し、アストロフォージャンプラズマ物理研究部門及び定量・イメージング生物学研究部門を立ち上げた。令和2、3年度は新たに3名の外国籍の特任研究員を採用したほか、プリンストン大学との間でクロスアポイントメント契約を締結し、プリンストン大学の研究者1名が日米双方において研究を行うこととした。研究体制が整備されたことにより、海外における共同研究から生まれた知的財産の米国仮出願や、著名な雑誌に論文が掲載される等、複数の研究成果が上がっている。

●自然科学大学間連携推進機構（NICA）の推進：
「大学との組織的対話」を強力に進め、大学の執行部の要望を把握して共同利用・共同研究を推進することにより、大学の機能強化・研究力強化に貢献するとともに、共同利用・共同研究全体の更なる発展を図っている。NICA での議論に立つ、大学の枠を超えて若手研究者を育成する「NICA フェロー制度」を設立・実施するとともに、大学の枠を超えた設備共有・技術共有などの取組みを実施した。令和2年度からは、コロナ禍における研修促進に向け、技術研修画を作成してウェブサイトへ掲載するなどし、必要な時に常時アクセス可能な体制を整えた。

研究大学コンソーシアムの推進：
研究大学に取組む大学及び大学共同利用機関法人が、各大学等における取組み・課題の発信や好事例の共有化を進めるため、ネットワークとしてのコンソーシアムを形成し、それら取組みの全国的な普及・拡大を図っている（現在、36の国公立大学等で構成、メンバーが各構成機関の研究担当理事）。各大学の研究力強化に貢献するため、機構は「研究大学コンソーシアム」の幹事機関として、積極的な運営を行った。令和2年度には新たに「異分野融合タスクフォース」を設置するとともに、令和3年度には分野や機関の枠を超えた研究推進を推進するため「MIRAI-DX プラットフォーム」の整備を完了した。令和4年度以降、同プラットフォームを活用し、更なる大学の研究力強化を図る。

＜大学の研究力強化への貢献＞ ※整理2

●自然科学大学間連携推進機構（NICA）の推進：
「大学との組織的対話」を強力に進め、大学の執行部の要望を把握して共同利用・共同研究を推進することにより、大学の機能強化・研究力強化に貢献するとともに、共同利用・共同研究を推進するため「MIRAI-DX プラットフォーム」の整備を完了した。令和2年度からは、コロナ禍における研修促進に向け、技術研修画を作成してウェブサイトへ掲載するなどし、必要な時に常時アクセス可能な体制を整えた。

●「NICA」による「設備共用」「技術共有」の促進：
前述の「NICA」において、各大学が持つ設備共用システムをネットワーク化した全国的な共用体制の構築、及び各大学に所属する技術職員の知識共有化の検討を開始した。

研究大学コンソーシアムの推進：
研究大学に取組む大学及び大学共同利用機関法人が、各大学等における取組み・課題の発信や好事例の共有化を進めるため、ネットワークとしてのコンソーシアムを形成し、それら取組みの全国的な普及・拡大を図っている（現在、36の国公立大学等で構成、メンバーが各構成機関の研究担当理事）。各大学の研究力強化に貢献するため、機構は「研究大学コンソーシアム」の幹事機関として、積極的な運営を行った。令和2年度には新たに「異分野融合タスクフォース」を設置するとともに、令和3年度には分野や機関の枠を超えた研究推進を推進するため「MIRAI-DX プラットフォーム」の整備を完了した。令和4年度以降、同プラットフォームを活用し、更なる大学の研究力強化を図る。

＜大学の研究力強化への貢献＞ ※整理2

●自然科学大学間連携推進機構（NICA）の推進：
「大学との組織的対話」を強力に進め、大学の執行部の要望を把握して共同利用・共同研究を推進することにより、大学の機能強化・研究力強化に貢献するとともに、共同利用・共同研究を推進するため「MIRAI-DX プラットフォーム」の整備を完了した。令和2年度からは、コロナ禍における研修促進に向け、技術研修画を作成してウェブサイトへ掲載するなどし、必要な時に常時アクセス可能な体制を整えた。
3年度: 8件採択)を実施し、異分野融合による新たな研究分野の開拓・創成に取り組んだ。また、オンラインによる機構内サイトビジットの開催やオープンラボの基盤整備を進め、異なる分野の研究者交流の活発化を図った。

大学の共同利用・共同研究拠点との連携 ※まとめ(3)①

- **双方向型共同研究:**
 毎年運営費交付金が減少していく中、年間約100件の採択数を確保しつつ、特徴ある核融合関連研究設備を持つ大学附属研究所・センター(共同利用・共同研究拠点となっている研究所・センターを含む)と核融合科学研究所との間で、双方向性のある共同研究を進めた。大学附属研究所・センターの装置を核融合科学研究所の共同利用設備と同等に見なして共同研究を受入れることで、核融合研究の発展を目指したネットワークの構築(核融合科学研究所、筑波大学、富山大学、京都大学、大阪大学、九州大学)を行ったほか、拠点間で予算を傾斜配分できるシステムを利用し、大学附属研究所・センターの有する装置について、予算を重点配分し、集中的な設備整備を行うことにより、核融合研究のより一層の推進に貢献した。

- **プラズマバイオコンソーシアム:**
 プラズマの分子生物学の解明を図る基礎研究を中心に推進し、新分野の創成を目指して、機構の新分野創成センターと、名古屋大学の共同利用・共同研究拠点となっているセンター及び九州大学のセンターが一体となって、平成30年度にプラズマバイオコンソーシアムを形成し、活動した。令和2年度には東北大学も参画し、体制が強化された。また、令和3年度には自然科学研究機構シンポジウム「生命科学とプラズマ工学がつくる未来」を開催し、プラズマバイオ領域の研究成果について広く一般へ公開した。

産学連携体制の充実 ※整理4、まとめ(3)②

- **産学連携体制の充実:**
 これまで各機関が独自に行っていた産学官連携を、機構の統一したポリシー・規程・運用等の下で実施し、研究成果を社会に還元し、より一層、社会に貢献することを目指して、令和元年度に「産学連携室」を設置するとともに、規程の整備、産学連携コーディネート(RA)新規雇用など、産学連携体制の充実を図った。また、令和2年度には企業向けのPR動画の制作産学連携に関する専門ホームページの作成、令和3年度には科学技術振興機構(JST)が主催する新技術説明会への参加など、産業界との連携に積極的に取り組んだ。

- **産学官連携研究部門の設置:**
 民間等外部機関からの資金を活用した産学官連携研究部門を制度化し、分子科学研究所に、産学官連携研究部門(社会連携研究部門)を設置し、産業界から得た資金を活用して、TILA（Tiny Integrated Laser: 小型集積レーザー）コンソーシアムを運営している。

人材育成 ※まとめ(1)②、まとめ(2)

- **若手研究者の育成と支援:**
 若手研究者の登用や、若手独立フェロー制度(学位取得後も独立研究者が独立研究室を主宰)等を、積極的に実施した。さらに、海外の大学や研究機関へ若手研究者派遣事業、国際連携研究センターでの若手の特任研究員の雇用や若手研究者による分野間連携研究プロジェクトを実施するとともに、各機関単位でも若手研究者を対象とした独自の研究費支援の事業を行うなど、若手研究者の育成を図った。また、機構の優秀な若手研究者に対して、「若手研究者賞」(平成24年度より実施。毎年度5名)を授与するなどの表彰を行った。このほか、令和元年度からは大学の枠を超えて若手研究者を育成する「NICA フェロー制度」を発足し、実施した。

- **大学院教育の充実:**
 大学院院教育では、機関内各機関が総合研究大学院大学（以下「総研大」という）の基盤機関として専攻を担当するとともに、特別共同利用研究員や連携大学院制度により学生を受け入れた。また、機構直轄のアストロバイオロジーセンターも令和元年度から新たに総研大の連携機関として大学院教育を担当し、宇宙・天文学と生物学が融合する新しい学問領域での教育を実施した。

両機関における共同研究者の割合は、令和3年度末時点で35.8%となり、中期計画に掲げる目標(35%程度を維持)を達成した。

産学官連携研究体制の在り方について(意見の整理)及び第4期中期目標期間における大学共同利用機関の在り方について(審議のまとめ)に関する取組みについては、それぞれ「※整理(該当番号)」、「※まとめ(該当番号)」と、見出しの末尾に付している。

また、共同利用・共同研究体制の強化については、以下の取組みを行った。

国立天文台では、ハワイのすばる望遠鏡による共同利用観測の一環として、超広視野じざんカメラ（HSC）戦略観測プログラム（SSP）を約7年かけて完了した（令和4年1月）。HSC-SSP大規模データは約5億個超の天体の位置・明るさ・形状が正確に測定されており、3回に分けて世界中の研究者に公開された。
チリのアルマ望遠鏡について、運用・保守の国際責務を果たして観測時間を確保し、日本の大学が含まれる東アジア地域の研究者の支援を継続した。新型コロナウィルス感染症の影響により、共同利用観測を約1年間停止したが、令和3年3月に再開した。令和3年度には、台湾を中心とする国際協力によりバンド1受信機66台の組立てを完了したほか、GPU（Graphics Processing Unit）技術に基づく新型分光計を開発し、チリ現地でファーストライトを達成した。

天文シミュレーション用の演算加速器として、GPUを用いた大規模並列計算システムを導入し、令和3年度より共同利用に供し、研究を推進した。共同利用機能を持続的かつ高いレベルで提供するため、すばる望遠鏡の共同利用率を90%に、天文シミュレーションシステムの共同利用率を100%に維持した。

外部委員が過半数を占める「科学戦略委員会」の下に2つのワーキンググループ（令和2年度に惑星科学WG、令和3年度に天文データアーカイブWG）を設置し、天文学分野を横断する課題や将来計画等の議論を進めている。

令和2年度よりテニュアトラック制度を開始し、助教2名を統計数理研究所に派遣して同研究所との研究交流を強化した。また、鹿児島大学、電気通信大学、大阪府立大学等と包括的な研究協力の協定を締結し、各大学の大学院生が国立天文台の施設等を活用して天文学の研究・開発を行っている。令和3年度には、台湾中央研究院天文及天文物理研究所（ASIAA）とすばる望遠鏡に関する科学協力覚書を締結し、天文学研究分野における日本と台湾のより強固な連携を促進した。

核融合研究の拠点となる大学等の装置を同研究所の共同利用設備と同等と見なし、全国の大学研究者たちがそれら大学等の装置を対象に共同利用・共同研究として進めることが出来る「双方向型共同研究」をはじめ、「LHD（大型ヘリカル装置）計画共同研究」及び「一般共同研究」という三つの制度から成る共同研究を推進し、大学等からの幅広いニーズに対応した。さらに、令和元年度からは、原型炉開発に向けた研究開発を進めるため、新たに「原型炉研究開発共同研究」を開始し、基礎から応用に至る広範囲の共同利用・共同研究を学術研究として展開した。これにより、新たな分子能力の創発の現場となるメゾスコピー領域（ミクロとマクロの機能が影響を及ぼし合う領域）で、分子の機能や反応の契機となる過程を明らかにすることを目的に、新しい発想に基づく革新的な計測法の開拓を目指し、分子制御レーザー開発研究センターをメゾスコピー計測研究で

新型コロナ感染拡大に伴う移動制限への対応として、トレーニングコースをオンライン及びオフライン/オンラインのハイブリッド形式で開催するとともに、共同利用研究においても遠隔化・リモート化の体制整備を進めた。

プレスリリース

プレスリリース

プレスリリース

プレスリリース

プレスリリース
センターに改組した。分子科学研究所が有する特徴的な実験施設である極端紫外光研究施設の高度化に向けて海外の研究機関と学術交流を締結し、世界最高性能の光電子運動量顕微鏡の開発を海外の研究機関と共同で推進するとともに、主任研究員を採用し、競争力ある新規放射光利用測定装置を開発・整備する研究活動を開始した。また、10年単位の次世代計画についての検討を継続して行った。計算科学研究センターでは、分子科学分野での国際的な競争力を模倣する計算環境を維持するため、次期の計算機導入計画（次期機種の導入期間：令和4年12月〜令和10年11月予定）の策定を開始した。国際的見地から研究体制及び共同利用、共同研究体制についての助言を得るため、令和2年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめて国際諮問委員会への回答書として、公開した。分子科学研究所で生み出した新たな研究分野を大学等に拡げた、大学との研究体制及び共同利用・共同研究体制についての助言を得るため、令和元年度に国際諮問委員会を開催した。その報告に基づき、必要と考えられる改善方針を策定し、一部実施を開始するとともに、それらを取りまとめ-20-
◎ 項目別の状況

Ⅰ 業務運営・財務内容等の状況

1. 業務運営の改善及び効率化に関する目標
 1. 組織運営の改善に関する目標

<table>
<thead>
<tr>
<th>中期目標</th>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【自】社会のニーズを的確に反映し、幅広い視点での自立的な運営改善を図るため、事務局及び教育研究評議会からの購読事項への対応を1年以内に行うとともに、フォローアップを毎年度実施する。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況)</td>
<td></td>
</tr>
<tr>
<td>【2】専門分野ごとに基礎学際領域の連携、外部評価における提言及び外部の学識経験者からの指導、助言に基づく、指導から1年以内に、研究活動計画、共同利用・共同研究等における重要事項の改善を行う。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況)</td>
<td></td>
</tr>
<tr>
<td>【3】機関長のリーダーシップの下で、法人の強みや特色を生かし、教育、研究、社会貢献の機能を最大限化できるよう、権限と責任が一致した意思決定システムの確立、監事機能の強化を図る。</td>
<td>IV</td>
<td>(令和2及び3事業年度の実施状況)</td>
<td></td>
</tr>
<tr>
<td>【4】監事機能の強化を図るとともに、サポート体制を強化するため、監事が機構長選考方法や法人内部の意思決定システム及び法人の一貫化を進めるため、内部監査機関を設置し、監事監査規程を改正し、監事の役割を明確化した。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況)</td>
<td></td>
</tr>
</tbody>
</table>

自然科学研究機構
<table>
<thead>
<tr>
<th>ページ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>優秀な若手・外国人の増員や研究者の流動性向上などにより教育研究の活性化を図るため、クロスアポイントメント制度の活用を強化し、特に若手研究者の育成に重点を置く。このため、2022年度に新設された戦略性の高い「若手研究者育成プロジェクト」を実施し、若手研究者の育成を加速する。さらに、2023年度には「若手研究者育成プロジェクト」を拡大し、若手研究者の育成支援をさらに強化する。</td>
</tr>
</tbody>
</table>

| 56 | 研究の成果を向上させるため、研究機関のネットワーク拡大と、若手研究者の育成に重点を置く。このため、若手研究者の育成に重点を置くプログラム「若手研究者育成プロジェクト」を実施し、若手研究者の育成を加速する。さらに、2023年度には「若手研究者育成プロジェクト」を拡大し、若手研究者の育成支援をさらに強化する。 |

| 57 | 技術職員の資質と専門的能力の向上を図るため、職能開発、研修内容を充実するとともに、技術交流、研究発表会、研究論文の発表を通じてより多くの発表機会を提供する。特に、新型コロナウイルス感染症の影響により、技術研修の体制が変更され、NICAを通じて技術研修の動画配信を実施した。 |

| IV | (令和2年度および3年度の実施状況)
機構では、教育研究の活性化を図るため、様々な種別によるクロスアポイントメント制度の活用を積極的に行い、適用者は令和2年度末時点で17名、令和3年度末時点で21名（平成27年度比17名増）に上った。受入及び派遣先については、国内の国立大学のように、研究機関や海外の大学等の多岐にわたり、さまざまなバックグラウンドを持つ人材の交流により、機構の教育研究活動を活性化させることとなった。 |

| IV | (令和2年度および3年度の実施状況)
職員の研究に対するインセンティブを高めるため、職員の適切な人事評価を毎年度行い、問題点の把握や改善に応じた処遇を行う。また、URA（University Research Administrator）などの高度な専門性を有する者を含む、多様な人材の確保と、そのキャリアパスの確立を図るため、URAと研究教育職員等との相互交流など多様な雇用形態のロールモデルを構築する。 |

| IV | (令和2年度および3年度の実施状況)
技術職員、事務職員の資質と専門的能力の向上を図るため、職能開発、研修内容を充実するとともに、自己啓発の促進に努め、研究発表会、研修等への積極的な参加を促す。事務職員については、機構全体を対象として、各役職・業務に応じた研修を毎年度5回以上実施する。 |

| IV | (令和2年度および3年度の実施状況)
技術職員については、技術研究会等への参加を通じ、技術交流を促進することを目的として、「技術研究会等への参加を通じ、技術交流を促進することを目的とし、技術交流、研究発表会、研修等への積極的な参加を促す。事務職員については、機構全体を対象として、各役職・業務に応じた研修を毎年度5回以上実施する。 |

| IV | (令和2年度および3年度の実施状況)
技術職員については、技術研究会等への参加を通じ、技術交流を促進することを目的とし、技術交流、研究発表会、研修等への積極的な参加を促す。機構全体を対象として、各役職・業務に応じた研修を毎年度5回以上実施する。 |

| IV | (令和2年度および3年度の実施状況)
技術職員については、技術研究会等への参加を通じ、技術交流を促進することを目的とし、技術交流、研究発表会、研修等への積極的な参加を促す。機構全体を対象として、各役職・業務に応じた研修を毎年度5回以上実施する。 |

| IV | (令和2年度および3年度の実施状況)
技術職員については、技術研究会等への参加を通じ、技術交流を促進することを目的とし、技術交流、研究発表会、研修等への積極的な参加を促す。機構全体を対象として、各役職・業務に応じた研修を毎年度5回以上実施する。 |
女性研究者を積極的に採用し、女性研究者の割合を第3期中期目標期間終了時までに13%に引き上げる。また、新たな男女共同参画推進アクションプログラムを設定・実行することにより、男女共同参画の環境を整備・強化する。さらに、出産・育児・介護支援など様々なライフステージにおいて柔軟な就労制度を構築する。--23--

（令和2及び3事業年度の実施状況）令和2年度は、育児支援制度・出張帯同支援制度について、記入項目の削減など様式を見直し、手続の効率化を図り、利用者の利便性の向上を図るとともに、昨年度に引き続きチラシを作成し、制度の周知を図った。また、女性研究者を積極的に採用する施策として、女性研究者を雇用した機関に対して女性研究者雇用支援経費を配分する制度を実施し、配分対象となる女性研究者を雇用した5機関に対し、当該支援経費（5名分）を配分した。さらに、ライフステージにおける柔軟な就労制度の構築を進めるため、在宅勤務制度を構築し、令和2年度から運用を開始した。令和3年度は、第3期中期目標期間を総括する内容の講演会を4機構合同で開催したほか、育児支援制度・出張帯同支援制度の更なる周知のため、新たに共同利用・共同研究者向けのチラシを作成した。また、令和2年度に運用を開始した在宅勤務制度について、対象を研究教育職員から全職員へと広げ、就労制度の更なる柔軟化を図った。これら男女共同参画推進にかかわる環境整備・強化等により、令和3年5月、10月の時点で女性研究者割合13%以上を達成した。
Ⅰ 業務運営・財務内容等の状況
(1) 業務運営の改善及び効率化に関する目標
② 教育研究組織の見直しに関する目標

新たな学問分野の創出、共同利用・共同研究機能の向上の観点から、各機関等の研究機能を見直し、必要な体制整備、組織再編等を行う。

<table>
<thead>
<tr>
<th>中期目標</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【59】 各分野の研究動向の詳細な把握の上で、機構長のリーダーシップの下、機構長を議長とした研究基盤戦略会議において、機能強化及び資源の再配分の方針を策定する。</td>
<td>III (令和2及び3事業年度の実施状況) 機構長を議長とした研究基盤戦略会議において、機構における機能強化及び資源の再配分の方針を策定したほか、機構直轄の新分野創成センターや、アストロバイオロジーセンター、生命創成探究センター、国際連携研究センターの運営状況の確認・評価を行った。また、研究基盤戦略会議においては、競争的研究費における制度改善（研究代表者人件費制度の導入）について審議・決定を行ったほか、研究設備整備促進事業により、タンパク質動態機能解析システムを生命創成探究センターに導入（約6億円）し、研究環境の充実に努めた。</td>
<td></td>
</tr>
<tr>
<td>【60】 研究基盤戦略会議における機能強化の方針、資源の再配分を始めとした組織改革の方針に基づき、各機関等において、教育研究組織の再編・改革等を行う。</td>
<td>III (令和2及び3事業年度の実施状況) 国立天文台では、令和3年度に野辺山45m電波望遠鏡による共同利用の終了に伴う、令和4年度以降の同望遠鏡の大規模電波観測の終了に伴う電波観測の再配分を、電波観測時間を有料化する新しい制度を実施した（国内大学院生には年間100時間まで無償提供を）。核融合科学研究所では、外部評価による提言や、運営会議における将来計画に関する議論、研究力強化戦略室での分析結果等に基づいて組織再編の素案を策定する。基盤生物学研究所では、令和2年度に研究力強化戦略室に「産学連携グループ」を新設し、研究結果のシーズ化等、産学連携の円滑化を図った。令和3年度は、第4期中長期目標期間での組織再編等について、運営会議での意見を踏まえながら検討を行い、生物機能解析センター、モデル生物研究センター、新規モデル生物開発センターの3センターを超階層生物科学センターに改組することとした。生理学研究所では、令和2年度にクロスアポイントメント制度を利用した期限付き研究室の新規立ち上げを決定し、人事公募を行った。また、令和3年度には、運営会議の議論を踏まえ、新たに「感覚認知情報研究部門及び、クロスアポイントメント教員が主宰する「多細胞回路動態研究部門」と「分子神経免疫研究部門」を立ち上げた。また、共同利用研究の強化に向け、新たに「多細胞生理機能解析室」及び「時系列細胞現象解析室」を立ち上げた。</td>
<td></td>
</tr>
</tbody>
</table>

- 24 -
分子科学研究所では、令和2年度に引き続き、社会連携研究部門において、超小型レーザー光源技術の社会実装に係る研究開発を推進し、産学連携が進んだ。
中期目標

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 業務運営・財務内容等の状況</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 業務運営の改善及び効率化に関する目標</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ 事務等の効率化・合理化に関する目標</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

機構における事務組織について、事務局機能の強化を図るとともに、事務局と各機関間の一層の連携強化により、効率的な体制を構築する。

【Ⅰ】
事務局と各機関及び他機関の事務部門との連携を強化し、事務の共同実施等による事務処理の効率化を進める。また、テレビ会議システムによる会議開催を促進し、機構内会議に占めるテレビ会議の比率を、前年度比1以上とする。さらに、経費の節減と事務等の合理化を図るため、第3期中期目標期間終了時までに、すべての機構内会議においてペーパーレス化を導入する。

Ⅲ (令和2及び3事業年度の実施状況)
これまでの役員会・機構会議及び研究基盤戦略会議のテレビ会議（zoom）開催に加え、経営協議会、教育研究評議会、機構長選考会議についてもテレビ会議（zoom）で開催（令和2年度より）するなどし、令和2、3年度において、機構内会議に占めるテレビ会議比率を前年度比1以上とする中期計画を達成した。

また、令和3年度には、すべての機構内会議においてペーパーレス化を実施した。
さらに、クラウドアプリケーション（Google Workspace、Microsoft365等）を導入・活用することにより事務処理の一層の効率化を進めた。
1. 特記事項
1) 組織運営の改善
機構長のリーダーシップの下、共同利用・共同研究及び計画・評価担当理事の
常勤化（平成 30 年度）、副機構長への担当分野の割り当て（平成 28 年度）等、機
構長を多方面から補佐する体制の強化を実施するとともに、機構のグローバリゼ
ーション機能を最大化するため海外駐在 URA を積極的に活用など、機構の
持つ強みや特色を生かした機能強化策を実施してきた。
特に学術機関における技術を整えるため、抜本的な改
革に取り組んだ。関連規程の大幅改訂・整備（平成 30 年度）、産学連携担当 URA
2 名の本部への配置（令和元年度）に加え、令和 2 年度には新たに民間企業経験
者を学術連携担当理事として配置し、その研究や産学連携活動に生かす仕組みを
構築した。これらの体制強化により、令和 2 年度には企業向けの FR 動画の制作、
産学連携に関する専門ホームページの作成、令和 3 年度には JST が主催する新技
術説明会への参加など、産業界との連携を積極的に推進した。
令和 3 年度には、幅広い課題の解決に向け、部門横断的な検討を可能にするた
め、研究力強化推進本部の改組を決定した。研究力強化推進本部の下にチーム制
からなる企画戦略室を新たに配置し、URA の専門性を最大限に活かし、かつ事務
部門との連携を強化することで、融合的課題に対応し、学術のみならず社会へ
貢献を果たす体制とした。[53]

法人のガバナンス体制等における監査の一環として、役員会、機構会議、経営
協議会及び教育研究評議会に加えて、機構長監査評議会、所長監査評議会、研究基
盤戦略会議に監査が参加することを制度化するとともに、監査役と機構長の意見交
換を行うなど、法人のガバナンス体制等についての監査体制の強化を図った。また、監査役と機構長の意見交
換を行うなど、法人のガバナンス体制等についての監査の監査体制の強化を図った。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。
また、ライフスタイルにおける社会的・社会的環境整備のため、在宅勤務を整
備し、令和 2 年度から運用を開始した。新型コロナウイルス感染症拡大前からの
準備を基礎とし、コロナ禍においてもスムーズな業務運営が可能となった。

「第三期中期目標期間における男女共同参画推進に関するアクションプラン」
で予定されていた講演会やパンフレット作成をそれぞれ 1 年前倒しで進め（講演
会：平成 30 年度、パンフレット：令和元年度）、また育児支援制度、出張帯同制
度などを新設するなど、男女共同参画推進の環境整備・強化を積極的に推進した。

2．共通の観点に関する取組み状況

ガバナンス改革
令和2年度には、これまで兼任となっていた監査室長を専任職員として機構本部に配置し、監事と監査室の連携強化を図った。令和3年度には、監事監査規程を改正し、「競争的研究所等の運営及び管理に関する事項」を新たに監査対象とするこもし、研究費不正防止に対する監事の役割を明確化した。（再掲）
自然科学研究機構

Ⅰ 業務運営・財務内容等の状況
(2) 財務内容の改善に関する目標
① 外部研究資金、寄附金その他の自己収入の増加に関する目標

<table>
<thead>
<tr>
<th>中期目標</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>中期計画</td>
<td>(令和2及び3事業年度の実施状況)</td>
<td>機構ウェブサイトに外部研究資金情報を一括掲載するページを設け、機構内への周知徹底を図ったほか、各機関においても科研費や外部資金の情報をウェブサイト（インタラサイト）へ掲載する、電子メールでアナウンスするなど、関係者への情報提供に努めた。また、国立天文台では令和3年度に、優秀な博士人材を確保する「次世代研究者支援事業」として、株式会社岩手日報社との間で包括的な連携協定を締結した。</td>
</tr>
</tbody>
</table>

外部研究資金その他の自己収入の効果的な確保と増加を図るための基盤を強化する。
自然科学研究機構の中期計画の達成度について

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
</table>

【Ⅲ】
人件費以外の経費について、増減要因の分析を踏まえ、毎年度、経費の節約策を定める。また、不使用時の消灯やペーパーレスなど経費の節減に関する教職員の意識改革を行う。
さらに、各機関や他大学等の節約方法に関する情報の共有を通じ、経費の削減につなげる。

さらに、各機関や他大学等の節約方法に関する情報の共有を通じ、経費の削減につなげる。

自然科学研究機構設備整備費促進事業として、運営費交付金から効率等により捻出した一定の額を毎年度確保（令和元年度〜、2億円/年）する仕組みを構築した。令和2年度においては、この事業により、タンパク質動態機能解析システムを導入（約6億円）し、研究環境の一層の充実に努めた。
また、各機関でも積極的に経費節減に取り組み、照明器具のLED化、老朽化した機器の使用停止、経年劣化した自動車の廃止などを実施した。
中期目標

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【64】 固定資産について、各機関の使用責任者による実地検査を行い、6年間ですべての資産の実地検査を行う。また、資産管理部署においても使用状況を定期的に検証し、利用率の低い資産や所期の目的を達した資産については、機構全体的な観点から活用方策を検討するなど、資産の不断の見直しを行う。</td>
<td>Ⅲ (令和2及び3事業年度の実施状況)</td>
<td>機構では、固定資産について、使用責任者及び資産管理担当職員による使用状況確認を含む実検を継続的に行い、すべての資産の実地検査を完了した。また、不使用となった資産（少額備品を含む）等については、資産の有効利用を図る観点から、機構内Webページに掲載することで機構内のリユース活用を呼びかけるなど積極的に再利用に取り組んだ。</td>
</tr>
<tr>
<td>【65】 機構直轄管理の施設の運用促進に取り組むとともに、これまでの運用状況を踏まえ、将来に向けた運用計画を検討し、平成30年度までに、運用継続の可否を含めた結論を得る。</td>
<td>Ⅲ (令和2及び3事業年度の実施状況)</td>
<td>野辺山、乗鞍観測所については新型コロナウィルス感染症の流行拡大に伴い、令和2年9月より利用を停止していたが、利用状況、費用対効果などを総合的に勘案の上、令和2年12月の役員会にて、廃止を決定した。なお、当該施設については、所在地長野県南牧村より取得要望があったことから、令和4年1月に譲渡した。乗鞍観測所については、平成30年度末に運用を停止して以降、近隣自治体及び観光協会と情報共有を図りつつ、存続及び譲渡を模索してきたが、所在地国立公園の保護管理等を行っている中部岳岳国立公園管理事務所（環境省）より解体撤去の指導があったことから、これを廃止することとし、関係機関等に対して周知・説明を行った。なお、伊根実験室については、令和元年度に建物を取り壊し、更地にした上で土地を返還している。</td>
</tr>
</tbody>
</table>
（2）財務内容の改善

1. 特記事項

1）外部研究資金、寄附金その他の自己収入の増加

機構では、外部研究資金等に関する情報収集を図り、機構内限定 Web ページへの募集情報の掲載や説明会の実施等により、機構内の職員への周知に努め、外部研究資金等獲得による自己収入の増加を図った。なお、令和2、3年度の科学研究費助成事業における獲得実績は下記のとおりである。特に一件当たり採択数順位ではトップレベルの水準となっている。

<table>
<thead>
<tr>
<th></th>
<th>令和2年度</th>
<th>令和3年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>採択件数（件）</td>
<td>399</td>
<td>395</td>
</tr>
<tr>
<td>採択額（百万円）</td>
<td>1,927</td>
<td>2,193</td>
</tr>
<tr>
<td>一件当たり採択額（千円）</td>
<td>4,828</td>
<td>5,552</td>
</tr>
<tr>
<td>一件当たり採択額順位</td>
<td>5位</td>
<td>2位</td>
</tr>
</tbody>
</table>

国立天文台では、令和2年度に水沢VLBI観測所において、観測所を応援するため地元の方々から計53件、総額35,934,800円の寄附金が寄せられたほか、野辺山宇宙電波観測所では、地元の長野県南牧村から5,562,945円の寄附金が寄せられた。また、令和2年度より三鷹本部内におけるドラマ・映画等の撮影料の徴収を開始し、令和2年度は1,760,000円、令和3年度は412,500円の収入を得た。さらに、令和3年度に、優秀な博士人材を確保する「次世代研究者支援事業」として、株式会社岩手日報社との間で包括的な連携協定を締結した。

基礎生物学研究所では、令和2年度に引き続き、令和3年度にも株式会社ドワンゴと共同でインターネット中継を実施（タイトル：【超変態企画】テントウムシの完全変態を200時間見守る春の自由研究 基礎生物学研究所×ニコニコ）、実施日：令和3年4月24日）89万8179件のアクセスを得た。また、このポイントを原資に「基礎生物学研究所ニコニコ生物研究助成」として、番組作りに貢献した研究者に研究費として還元した。

2. 共通の観点に関する取組み状況

財務内容の改善

機構では、機構長のリーダーシップの下、最先端の研究設備を計画的に整備するため、自然科学研究機構設備整備費促進事業として、運営費交付金から効率化等により積出した一定の額を毎年度確保（令和元年度〜、2億円/年）する仕組みを構築した。この事業により導入したタンパク質動態機能解析システムは、溶液中のタンパク質を原子分解能で構造解析でき、in situ トモグラフィー機能を有し、バイオセーフティにも対応しており、更に光標電顕相観察機能までを有するオンリーオンのシステムであり、医学・薬学をはじめ、多岐にわたり研究分野への貢献、異分野融合研究の推進が期待される。
中期計画

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
</table>

| 国際的に優れた研究成果を上げるため、研究体制、共同利用・共同研究体制や業務運営体制について、様々な機関外の者の意見を反映させ、適宜、見直し、改善・強化するために自己点検、外部評価等を充実する。 |

| 国立天文台では、外部委員が過半数を占める「科学戦略委員会」において天文学の将来計画に関する議論を行ってきたが、その一助として、「2021年度 国立天文台の将来シンポジウム～波長を超えて将来計画を考える～」をオンラインで開催（令和3年度開催）。 |

| 核融合科学研究所では、運営会議の中核的役割を担っている「プロジェクト評価委員会」において、プロジェクト室等の新たな評価方針や同委員会の役割を議論し、方針をとりまとめた。これに沿って令和3年度に国内外の有識者を迎えた国際外部評価（4件）をオンラインで実施した（評価報告書は令和4年度に完成、公開予定）。 |

| 基礎生物学研究所では、着任後10年目の教授を対象に、業績を確認するため、複数の外国人を含む評価者による評価を実施した（令和2及び3事業年度の実施状況） |

| 生理学研究所では、運営会議の構成員の過半数を外部委員とし（令和2年度）、より開かれた運営体制を整備するとともに、研究所全体の活動を点検・総括する報告書を作成し、運営会議にて審議を行った。 |

| 分子科学研究所では、令和元年度に実施した国際諮問委員会の報告を公開するとともに、必要と考えられる改善方針の策定・改善策の実施を開始した。 |

| 自然科学研究機構 |
表1 令和2及び3事業年度の実施状況

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【67】</td>
<td>国人を含む研究顧問から各研究グループの研究内容の評価を受けるとともに、運営顧問から研究所の運営に関する助言を得た。</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>本機構の業務運営を改善するため、各機関のIR機能の連携により機構全体のIR機能を強化するとともに、平成30年度に機構全体の自己点検及び外部評価等を実施し、その結果を広く公開する。</td>
</tr>
</tbody>
</table>

令和2年度は評価分析ツール（InCites, SciVal）を活用し、機構の研究成果及び共同利用・共同研究の成果の評価分析を実施するとともに、ORCIDと連携した研究者総覧を利用して業績の把握を行った。令和3年度は、NOUSに共同利用・共同研究の成果論文自動取得機能や大学院生の学位取得への貢献を把握する機能などを実装した。これにより手作業では把握しきれなかった共同利用・共同研究の成果論文を収集できるようになったほか、博士号取得への貢献という指標により、共同利用・共同研究による大学の教育への貢献度を評価できるようになるなど、これまで以上に共同利用・共同研究による大学の研究力強化への貢献を把握できる体制を整えた。
中期目標

自然科学研究機構の実情や果たしている機能、運営内容や研究活動について、広く国内外に分かりやすい形で示すように適切かつ積極的に情報公開や情報発信を行う。

中期計画

<table>
<thead>
<tr>
<th>判定理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>令和2及び3事業年度の実施状況</td>
</tr>
<tr>
<td>機構シンポジウムを各年度2回開催するとともに、機関長プレス懇談会、若手研究者賞受賞記念講演会なども実施した。令和3年度には、連携協定を締結している岡崎市において、市内の小・中学校向け、オンライン授業を実施した。各機関においても一般公開、市民公開講座等をオンラインにより開催し、社会や地元に対する情報発信・貢献に意欲的に取り組んだ。また、国際広報については、機構の英文ホームページを充実させることにより、アクセス数が平成27年度比で約20％増加し、プレスリリース配信サービス「EurekAlert！」を活用し、令和3年度には80件のプレスリリースを配信した（令和2年度は101件）。リリース件数は、平成27年度の45件から、約77％の増加となり、6年間で20％増加するとした中期計画を大きく上回る実績となった。</td>
</tr>
</tbody>
</table>
1．特記事項
1) 評価の充実
令和2年度は、評価分析ツール（InCites, SciVal）を活用し、機構の研究成果及び共同利用・共同研究の成果の評価分析を実施するとともに、同ツールの対象外の成果の把握のため、ORCIDと連携した研究者情報管理において成果の把握を行った。一方で、機構内研究者のORCIDレコードの整備が進捗されておらず、統計的な分析が難しかったという問題点も確認されたため、令和3年度はresearchmapからのデータ取得によるORCIDの補填を検討した。また、NOUSによるIR強化として、令和3年度に共同利用・共同研究の成果論文自動取得機能（論文の謝辞欄に機関名と課題番号が記載されている論文の情報を課題に紐づけて取得）を実装したことにより、これまで十数万件以上にわたり成果論文が取得できるようになり（平成30年〜令和3年の3年間で246件の論文を本機能で新たに把握）、共同利用・共同研究の成果の把握の精度が向上した。また、更なる精度向上のため、本機能の仕様に合わせて論文が取得できない共同利用のカテゴリーについて、仕様に合わせた課題番号に変更した。同じく令和3年度にNOUSで実装した共同利用・共同研究に参加した学生の博士号取得への貢献の把握の機会について、機構本部で実施している分野融合型共同研究事業で試行したところ、令和3年度に当該業務の研究に参加した学生2名の博士号取得に貢献したというデータが得られ、共同利用・共同研究を通じた大学の教育への貢献の分析への道筋がついた。

2) 情報公開や情報発信活動等の推進
メディアとの関係構築、定期的な情報交換の場である機構長プレス懇談会を令和2、3年度で計7回開催し、延べ72名の記者の参加を得た。加えて、国民の科学に対する関心を高めるとともに、機構の研究活動を広く社会に発信するため、「自然科学研究機構シンポジウム」を、いずれもオンラインにて各年度2回開催した（第30回「宇宙科学と生命科学の深〜いつながり」令和2年9月26日実施。第31回「生きているとは何か？」令和3年3月13日実施。第32回「生命科学とプラズマ工学がつくる未来」令和3年8月21日実施。第33回「宇宙と、分子と、私たち」令和4年3月13日実施）。さらに、令和3年度には、連携協定を締結している岡崎市において、市内の小中学生向けオンライン授業を3回実施した。特に第3回目では、岡崎市の小中学校と連携し、8,000名以上の生徒に対して「生命の科学はどこから来たのか？〜電波で探る宇宙〜」と題した講演を行った。途中にクイズやアンケートを挟み、適宜それを踏まえて話をして進めると共に双方向コミュニケーションを重視した構成とし、8割近い参加者が好評を得た。また、国際広報においては、米国科学振興協会（AAAS）が運営するプレスリリース配信サービスEurekAlert!を活用し、令和2年度に101件、令和3年度に80件を投稿した。これらは平成27年度のリリース件数45件の約77%の増加であり、6年間で20%増加するとした中期計画を大きく上回る実績となった。

2) 情報公開や情報発信活動等の推進
メディアとの関係構築、定期的な情報交換の場である機構長プレス懇談会を令和2、3年度で計7回開催し、延べ72名の記者の参加を得た。加えて、国民の科学に対する関心を高めるとともに、機構の研究活動を広く社会に発信するため、「自然科学研究機構シンポジウム」を、いずれもオンラインにて各年度2回開催した（第30回「宇宙科学と生命科学の深〜いつながり」令和2年9月26日実施。第31回「生きているとは何か？」令和3年3月13日実施。第32回「生命科学とプラズマ工学がつくる未来」令和3年8月21日実施。第33回「宇宙と、分子と、私たち」令和4年3月13日実施）。さらに、世界のより多くの人々への科学を普及する活動を推進するため、令和3年度に国際天文学会連合（IAU）と国際普及室に関する新協定を締結した。

基礎生物学研究所では、コロナ禍におけるアウトリーチ活動としてインターネットを利用した活動に力を入れ、株式会社ドワンゴと共同で生き物の発生のインターネット中継（研究者が解説を担当）を、令和2年度は「メダカ」及び「プラナリア」を題材に実施し、それぞれの9万6,985件と9万5,204件のアクセス、令和3年度は「テントウムシ」を題材に実施し、のべ89万8,179件のアクセスを得るとともに、ニコニコ生放送のビット機能の利用により収益を得た。このほか、科学テレビ番組の取材に、リモート取材も併用しつつ、積極的に協力し、NHKワールドの番組「AIと錯視を活用した脳科学家研究」に関する番組が国際放送された。
自然科学研究機構

Ⅰ 業務運営・財務内容等の状況
(4) その他業務運営に関する重要目標
① 施設設備の整備・活用等に関する目標

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【69】 グローバル化の推進やイノベーションの創出など教育研究の質の向上の観点から、国の財政措置の状況を踏まえ、キャンパスマスタープランの年次計画に沿った研究施設・設備等の充実を図る。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況) キャンパスマスタープランの年次計画に沿って、各地区の研究施設・整備等の改修・更新を行った。</td>
</tr>
<tr>
<td>【70】 施設マネジメントポリシーの点検・評価に基づき、重点的かつ計画的な整備を進め、施設整備の見直しを毎年度実施し、施設の効率的かつ効果的な活用を図る。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況) 施設マネジメントポリシーに基づき、各機関において毎年度、利用実態調査、満足度調査等を実施し、施設の利用状況の把握に努めた。また、その結果を活用し、施設の効率的・効果的な活用を進めた。</td>
</tr>
<tr>
<td>【71】 施設・設備の安全性・信頼性を確保し、所要の機能を長期間安定して発揮するため、計画的な維持・保全を行う。</td>
<td>III</td>
<td>(令和2及び3事業年度の実施状況) 令和元年度に策定したインフラ長寿命化計画に基づき、各機関の施設・設備に対し適切な維持保全事業を実施した。</td>
</tr>
</tbody>
</table>

資料 355

-37-
<table>
<thead>
<tr>
<th>中期目標</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【22】施設・設備及び機器の安全管理、教育研究及び職場環境の保全並びに毒物劇物、放射性同位元素、実験動物、遺伝子組み換え生物等の適正な管理を行うため、既存の安全管理・危機管理体制を検証し、体制の見直しを行う。また、関係行政機関との防災に係る相互協力体制を確立させ、毎年度、連携した訓練を行う。</td>
<td>III</td>
<td>（令和2及び3事業年度の実施状況） 令和2年度は岡崎3機関明大寺地区、国立天文台水沢地区、核融合科学研究所総合工学研究棟の3か所において、令和3年度は国立天文台三鷹地区、核融合科学研究所（オンライン）、岡崎3機関山手地区において、特別相互巡視を実施し、その結果を各機関へフィードバックすることで体制の見直しを行った。また関係行政機関と協力し、訓練を実施した。</td>
</tr>
<tr>
<td>【23】職員の過労労働及びそれに起因する労働災害を防止するため、労働災害の要因調査・分析を行うとともに、メンタルヘルスケアのためのストレスチェック及び講習会を毎年度実施する。</td>
<td>III</td>
<td>（令和2及び3事業年度の実施状況） 令和2年度よりメンタルヘルス不調による健康障害を予防するための心の健康づくり計画を策定するとともに、メンタルヘルスケアのためのストレスチェック及び講習会を実施した。また、引き続きストレスチェックを実施するとともに、その結果を職場環境の改善につなげるための職場環境改善対策検討会を開催した。</td>
</tr>
<tr>
<td>【24】情報システムや重要な情報資産への不正アクセスなどに対する十分なセキュリティ対策を行うとともに、セキュリティに関する啓発を行う。本機関のセキュリティポリシーを毎年度見直し、それらを確実に実行する。</td>
<td>III</td>
<td>（令和2及び3事業年度の実施状況） 令和元年度に策定したサイバーセキュリティ対策に基づき、自己点検、監査、訓練・研修を実施した。</td>
</tr>
</tbody>
</table>
表 3 中期目標

<table>
<thead>
<tr>
<th>中期計画</th>
<th>進捗状況</th>
<th>判断理由（計画の実施状況等）</th>
</tr>
</thead>
<tbody>
<tr>
<td>【76】</td>
<td></td>
<td>令和2及び3事業年度の実施状況等</td>
</tr>
<tr>
<td></td>
<td></td>
<td>研究活動における不正行為及び研究費の不正使用を防止するため、組織の管理責任体制を明確化し、e ラーニングによる研究倫理教育、各種啓発活動の実施、競争的資金等の不正使用防止に係るコンプライアンス教育等を毎年度実施するとともに、その効果を定期的に検証し、実効性を高める。</td>
</tr>
</tbody>
</table>

| 【76】 | | 令和2及び3事業年度の実施状況等 |
| | | 研究活動における不正行為を防止するため、不正行為防止委員会を実施し、各機関や直轄センターにおける不正行為防止に関する実績の共有や、防止計画等について審議を行った。また、e ラーニングを活用し、研究倫理教育を実施し、コンプライアンス教育を行った。
研究費の不正使用防止に関しては、策定した不正使用防止計画に基づき、業務執行を行い不正使用防止に取り組むとともに、各機関の管理責任者による実施状況の検証を行った。また、競争的資金に関わる者について、公的研究費の不正使用防止に関するコンプライアンス研修を行い、誓約書を徴した。さらに、文部科学省所管の「研究機関における公的研究費の管理・監査のガイドライン」に基づき、新規取引業者に対し、誓約書の提出を求めた。 |
【4】 その他の業務運営

1. 特記事項

1）施設設備の整備・活用等

① 施設の有効利用や維持管理（予防保全含む）に関する事項
② キャンパスマスタープラン等に基づく施設整備に関する事項
③ 多様な財源を活用した整備手法による整備に関する事項
④ 環境法全対策や積極的なエネルギー・マネジメントの推進に関する事項
「令和2事業年度に係る業務の実施に関する報告書」の記載方法について（令和3年2月17日付事務連絡）より抜粋

以下、上記に関する事項に係る記述について、末尾に該当の番号を付している。

本機構では、施設担当理事の下に機構全体の施設整備・マネジメントに関する重要事項（キャンパスマスタープラン、インフラ長寿命化計画の基本方針や各機関等の内容、概算要求事業、施設マネジメントの取組み内容等）を審議する「施設整備検討委員会」を設置するとともに、本機構が設置する機関区分（国立天文台、核融合科学研究所、岡崎3機関）に、施設経営の観点から所長クラスを、施設利用の観点から研究者を構成員とした施設整備委員会等を設置して、施設マネジメントに関する取組み体制を構築している。

施設整備費補助金、施設費交付事業費、運営費交付金、施設維持管理等整備費等の多様な財源を活用して（③）、キャンパスマスタープラン等に基づき、国立天文台、核融合科学研究所、岡崎3機関に、施設経営の観点から所長クラスを、施設利用の観点から研究者を構成員とした施設整備検討委員会等を設置して、施設マネジメントに関する取組み体制を構築している。

施設整備費補助金、施設費交付事業費、運営費交付金、施設維持管理等整備費等の多様な財源を活用して（③）、キャンパスマスタープラン等に基づき、国立天文台、核融合科学研究所、岡崎3機関に、施設経営の観点から所長クラスを、施設利用の観点から研究者を構成員とした施設整備検討委員会等を設置して、施設マネジメントに関する取組み体制を構築している。

2. 共通の観点に関する取組み状況

法令遵守及び研究の健全化

機構では、法令遵守及び研究の健全化に関する取組みについて、機関として個人情報保護研修、ハラスメント防止研修等の研修を実施するとともに、パンフレットの配付、メールの配信を通じ、職員に周知徹底を図った。新型コロナウィルス感染症対策として、令和2年度および令和3年度に係る業務の実績に関する報告書」の記載方法について（令和3年2月17日付事務連絡）より抜粋

情報セキュリティに関する取組みについて、機構では、令和元年度に作成したサイバーセキュリティ対策基本計画に沿って実施している。これまで実施してきた対策を継続するとともに、クラウドのユーザ認証に2要素認証の導入を進めた（取組事項5.7.）ほか、新型コロナウィルス感染症拡大にともない在宅勤務への対応として、SSL-VPN等の提供（取組事項5.9.）とセキュリティ監視（取組事項5.2.）を実施している。また、情報セキュリティ自己点検については、従来は各機関により独自に実施していたが、令和3年度から機構全体として情報セキュリティ推進室が開発したWebアプリケーションにより実施（取組事項4.1.-4.3.）した。

2）安全管理

防災・防火の体制及び対策について常に見直しを図ることが重要であることから、機構では、平成28年度より機構内各機関の安全管理担当者による「安全管理に係る特別相互巡視」を実施し、その後の結果を各機関に持ち帰り活かすことにより、研究施設における従来の想定を超え出した事態に対応できる防災・防火体制の再構築を図り、安全な環境の下での実験研究を推進している。令和2年度は、岡崎3機関明大寺地区、国立天文台水沢地区、核融合科学研究所総合工学研究棟の3箇所において、令和3年度は、国立天文台三塚地区、核融合科学研究所（オンライン）、岡崎3機関山手地区において、特別相互巡視を実施した。具体的な実施内容としては、①機関における防災・防火体制の強化に向けた体制等の整備状況確認、②研究施設における安全管理の状況確認、③その他安全管理に関する情報交換を行った。【72】

機関では、各機関に設置の安全衛生委員会等において職員の過労労働に起因する労働災害の防止策について検討し、必要な対策を講じている。また、業務量が一定の時期に集中するときの対策を講じるとともに、業務の一部外注化や職員に対する意識啓発の実施等により、労働災害の発生を抑制している。令和2年度においては、メンタルヘルス不調による健康障害を予防するための心の健康づくり計画を策定し、プライベートの健康状態を考慮に入れた健康診断を実施した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。令和3年度は職員の健康診断結果に基づき、メンタルヘルス不調による休職者への職場復帰支援制度を整備した。
大によりオンラインでの研修としたものや、海外ブランチの職員を対象に e-ラーニング形式での研修を実施したものなど、状況に応じ、柔軟な研修体制をとった
【75】

研究活動における不正行為を防止するため、不正行為防止委員会を開催し、各機関や直轄センターにおける不正行為防止に関する実施の共有や、防止計画等について審議を行った。また、一般財団法人公正研究推進協会（APRIN）の e ラーニングプログラム（eAPRIN）等を活用し、研究倫理教育及びコンプライアンス教育を行った。

研究費の不正使用防止に関しては、策定した不正使用防止計画に基づき、業務執行を行い不正使用防止に取り組むとともに、各機関の管理責任者による実施状況の検証を行った。研究機関における公的研资本の管理・監査のガイドラインの改正に対応した関係規程の改正及び不正使用防止計画の変更を行い、不正使用防止体制の充実を図った。また、コンプライアンス教育・啓発活動の実施計画を策定し、令和 3年度に新たに作成したビデオ教材を活用したコンプライアンス研修及び理解度チェックの実施、啓発ポスターの作製・掲示など、計画に基づき啓発活動を行った。さらに、競争的研资本等に関わる者から誓約書を徴収するとともに、取引業者に対しても誓約書の提出を求めた。【76】
Ⅱ 手数料（行員費の見積もりを含む）、収支計画及び資金計画

※ 財務諸表及び決算報告書を参照

Ⅲ 短期借入金の限度額

<table>
<thead>
<tr>
<th>中 期 計 画</th>
<th>年 度 計 画</th>
<th>実 鎖</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 短期借入金の限度額 7,153,342千円</td>
<td>1 短期借入金の限度額 6,440,131千円</td>
<td>該当なし</td>
</tr>
<tr>
<td>2 想定される理由 運営費交付金の受け入れ遅延及び事故の発生等により緊急に必要となる対策費として借り入れる必要があるため。</td>
<td>2 想定される理由 运営費交付金の受け入れ遅延及び事故の発生等により緊急に必要となる対策費として借り入れる必要があるため。</td>
<td></td>
</tr>
</tbody>
</table>

Ⅳ 重要財産を譲渡し、又は担保に供する計画

<table>
<thead>
<tr>
<th>中 期 計 画</th>
<th>年 度 計 画</th>
<th>実 鎖</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 重要な財産を譲渡する計画 ①国立天文台岡山天体物理観測所職員宿舎跡地及び駐車場跡地（岡山県浅口市鴨方町鴨方2037-1及び2177-2）を譲渡する。 ②国立天文台野辺山宇宙電波観測所職員宿舎の土地及び建物の一部（長野県南佐久郡南牧村462-5）を譲渡する。 ③野辺山研修所の土地及び建物（長野県南佐久郡南牧村316-34）を譲渡する。</td>
<td>1 重要な財産を譲渡する計画 ①国立天文台岡山天体物理観測所職員宿舎跡地及び駐車場跡地（岡山県浅口市鴨方町鴨方2037-1及び2177-2）を譲渡する。 ②国立天文台野辺山宇宙電波観測所職員宿舎の土地及び建物の一部（長野県南佐久郡南牧村462-5）を譲渡する。 ③野辺山研修所の土地及び建物（長野県南佐久郡南牧村316-34）を譲渡する。</td>
<td>令和4年1月に野辺山研修所の土地及び建物（長野県南佐久郡南牧村316-34）を譲渡した。</td>
</tr>
<tr>
<td>2 重要な財産を担保に供する計画 該当なし</td>
<td>2 重要な財産を担保に供する計画 該当なし</td>
<td>該当なし</td>
</tr>
</tbody>
</table>

令和4年1月に野辺山研修所の土地及び建物（長野県南佐久郡南牧村316-34）を譲渡した。
<table>
<thead>
<tr>
<th>中 期 計 畫</th>
<th>年 度 計 畫</th>
<th>実 績</th>
</tr>
</thead>
<tbody>
<tr>
<td>毎事業年度の決算において剰余金が発生した場合は、その全部又は一部を、文部科学大臣の承認を受けて、教育研究の質の向上及び業務運営の改善に充てる。</td>
<td>決算において剰余金が発生した場合は、教育研究の質の向上及び業務運営の改善に充てる。</td>
<td>目的積立金 5,635 千円を取り崩し、教育研究の質の向上及び業務運営の改善に充てた。</td>
</tr>
<tr>
<td>Ⅵ そ の 他 １ 施設・設備に関する計画</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>中 期 計 畫</th>
<th>年 度 計 畫</th>
<th>実 績</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設・設備の内容</td>
<td>予定額（百万円）</td>
<td>財 源</td>
</tr>
<tr>
<td>高性能電磁石・磁気体の製造装置の開発</td>
<td>2,384</td>
<td>(516)</td>
</tr>
<tr>
<td>実験研究棟改修（基生研）</td>
<td>564</td>
<td>56</td>
</tr>
<tr>
<td>小規模改修</td>
<td>1,801</td>
<td>施設整備費補助金 (1,285)</td>
</tr>
</tbody>
</table>

（注1）施設・設備の内容、金額については見込みであり、中期目標を達成するために必要な業務の実施状況等を勘案し、施設・設備の整備や老朽度合い等を勘案した施設・設備の改修等が追加されることもある。

（注2）小規模改修について平成28年度以降は、平成27年度同額として試算している。なお、事業年度の施設整備費補助金、(独)大学改革支援・学位授与機構施設費交付金については、事業の進展等により所要額の変動が予想されるため、具体的な額については、各事業年度の予算編成過程等において決定される。
○ 計画の実施状況等

・30ｍ光学赤外線望遠鏡（TMT）計画の推進
 30ｍ光学赤外線望遠鏡（TMT）の関連設備の整備を実施した。

・大型光学赤外線望遠鏡「すばる」の共同利用研究
 大型光学赤外線望遠鏡「すばる」の関連設備の整備を実施しており、年度内に完了しなかったため、予算を一部翌年度へ繰越した。

・大型電波望遠鏡「アルマ」による国際共同利用研究の推進
 大型電波望遠鏡「アルマ」の関連設備の整備を補正予算により実施するもので、年度内に完了しなかったため、予算を全額翌年度へ繰越した。

・（明大寺）ライフライン再生（電気設備）
 明大寺地区などの中央監視設備の更新を実施した。

・（土岐）ライフライン再生（空調設備）
 開発実験棟及び準定常電源棟の空調設備の更新を実施した。

・（明大寺）基幹・環境整備（衛生対策等）
 事務センター棟の換気設備の更新を実施した。

・（三鷹）研究開発棟改修（空調設備）
 開発棟2号館のクリーンルームの拡張工事を補正予算により実施するもので、年度内に完了しなかったため、予算を全額翌年度へ繰越した。

・（明大寺）ライフライン再生（給排水設備等）
 明大寺A・B団地の給排水設備等の更新を補正予算により実施するもので、年度内に完了しなかったため、予算を全額翌年度へ繰越した。

・小規模改修
 三鷹団地の開発棟2号館空調設備改修（Ⅰ期目）ALMA 棟防水改修、土岐団地のシミュレーション科学研究棟等屋上防水改修、明大寺B団地のエネルギーセンター棟の屋上防水改修、三島団地の岡崎コンファレンスセンターの屋上防水及び冷却塔改修、山手団地の山手2号館防災設備改修等を実施した。
その他の人事に関する計画

<table>
<thead>
<tr>
<th>中期計画</th>
<th>年度計画</th>
<th>実績</th>
</tr>
</thead>
<tbody>
<tr>
<td>教育研究の活性化を図るため、クロスアポイントメント制度を含む混合給与及び研究教育職員における年俸制の活用による人事・給与システムの弾力化に取り組む。特に、年俸制については、業績評価体制を明確化し、年俸制導入等に関する計画に基づき促進する。</td>
<td>教育研究の活性化を図るため、クロスアポイントメント制度を含む混合給与の導入を進めるとともに、併せて新たな年俸制の制度（新承継年俸制）によって海外機関等で活躍する有為な人材の確保に努める。研究教育職員の評価制度について、研究分野別、職位別の基準設定や重みづけによる評価基準を構築する。また、海外の連携機関との混合給与制度を活用し、国際公募を積極的に実施することにより、外国人研究者の採用を促進する。併せて、男女共同参画の環境を整備・強化し、女性研究者を積極的に採用する。</td>
<td>「(1) 業務運営の改善及び効率化に関する目標」P21, P22, 参照</td>
</tr>
</tbody>
</table>

(参考) 中期目標期間中の人件費総額見込み 61,141百万円（退職手当は除く。）

(参考1) 令和３年度の常勤職員数 1,144人また、任期付き職員数の見込みを417人とする。

(参考2) 令和３年度の人件費総額見込み 10,411百万円（退職手当は除く。）
9.6 大学共同利用機関法人自然科学研究機構第4期中期目標

（前文）法人の基本的な目標
学術研究は、真理の探究と文化の創造を目指して行われる知的創造活動であり、科学技術や産業、経済、教育、社会などの発展の基盤となるものである。大学共同利用機関法人自然科学研究機構（以下「本機構」という）は、宇宙、エネルギー、物質、生命等に関する自然科学分野の中心的研究機関（大学共同利用機関、以下「機関」という）の研究者に提供し、我が国の大学共同利用機関法人自然科学研究機構における学術研究の発展に貢献する。

具体的には、本機構が分野の異なる機関を複数持つ強みを活かし、個々の分野を超えて広範な自然の構造と機能の解明に取り組み、自然科学の新たな展開となる新しい学問分野の創出とその発展を図るとともに、これらをリードする若手研究者を育成する。また、最先端研究の現場を大学教育に広く展開し、市民の関心と学術研究への理解を得る。さらに、既存の研究機関の関心を促す上流研究を行うなど、社会的な貢献も積極的に実施する。

本機構は以上を基本的なミッションとし、機構長のリーダーシップの下、急速に進む世界的研究状況下において先導的な役割を果たすべく、不断の組織改革やDXによる研究システム改革等を通じて、新たな時代に向けた共同利用・共同研究機能強化を図る。

特に、第4期中期目標期間においては、国内外における異分野連携活動の促進、IRによる共同利用・共同研究の戦略的推進、研究データの集約化によるデータ駆動型サイエンス・オープンサイエンスの基盤となるデータの収集、公開・提供、利活用等への対応について、方針を明確化し、戦略的な対応を図る。

さらに、本機構は、他の3つの大学共同利用機関法人及び国立大学法人総合研究大学院大学とともに「一般社団法人大学共同利用研究教育アライアンス」（以下「アライアンス」という）を設立し、同アライアンスが企画する取組に参画することにより、異分野融合による研究力の強化や人材育成の充実、運営の効率化などの課題に対して、法人の枠組を超えた取組を一層推進する。

◆ 中期目標の期間
中期目標の期間は、令和4年4月1日から令和10年3月31日までの6年間とする。

I. 教育研究の質の向上に関する事項

1. 研究
（1）各分野の学術的研究を先導する中核拠点として、国際的な研究競争の激化や国際協力の進展等の動向を踏まえながら、大規模プロジェクトをはじめとする世界最先端の学術研究プロジェクト等の推進を図り、世界最高水準の研究成果を創出して、当該分野における我が国のプレゼンスを高める。
（2）各分野の特性を踏まえつつ、学術的又は社会的な要請を踏まえた学術研究を戦略的に推進し、その卓越性を強化する。時代の変化にかかわらず、継承・発展すべき学問分野に対して必要な資源を確保する。
（3）若手、女性、外国人など研究者の多様性を高めることで、知の集積拠点として、また各分野の研究者コミュニティの中核として、持続的に新たな価値を創出し、発展し続けるための基盤を構築する。

2. 共同利用・共同研究
（4）実験施設、研究設備、情報インフラ・データ基盤等の研究基盤について、ユーザーのニーズを的確に把握し、かつ、関係機関との連携・分担等を考慮した上で、高度化、利用の利便性向上、研究のDXへの対応等を適切に進め、共同利用機能の充実を図る。
（5）文献、標本、バイオリソース等をはじめとした学術資料について、学術的価値を踏まえた適切な保存、維持管理を行うとともに、関係機関との連携・分担を考慮しつつ、強みを持つ分野の資料、利用ニーズの高い資料等の収集・整備を戦略的に進めるとともに、共同利用機能の充実を図る。
（6）各分野における共同利用・共同研究体制の中核拠点として、データ駆動型サイエンス・オープンサイエンスの基盤となるデータの収集、公開・提供、利用方法等の対応について、方針を明確化し、戦略的な対応を図る。
（7）各分野における共同研究の機関等との連携を強化し、オープンインフラの枠組みに沿った研究者のネットワークの構築を推進し、さらにこれらのネットワークを活用し、研究者同士の連携活動を進めることにより、異分野融合による研究力の強化や人材育成の充実、運営の効率化などの課題に対して、法人の枠組を超えた取組を一層推進する。

3. 教育・人材育成
（7）総合研究大学院大学との緊密な連携・協力による大学院教育について、大学共同利用機関が有する優れた研究環境を活用し、さらに大学の大学院教育との密接な連携を通じ、個々の学部のニーズへのきめ細かな対応等により、その強みを伸ばし、優秀な学生の獲得につなげる。これにより、連携大学院制度、特別共同利用研究員制度等による大学院教育への協力について、受け入れ学生に対し、特異的・個別の教育環境を提供するとともに、若手研究者と大学との連携を活用し、また、競争力の高い海外の研究機関との連携構築を戦略的に推進し、これにより機関の研究者交流等を促進する。

3. 社会との共創
（9）産業界との連携による研究開発の推進について、研究者個人ベースでの受託研究・共同研究等に留まらず、組織間の連携の強化、オープンイノベーションの推進等を前提とした取組を進める。具体的には、研究開発への影響を及ぼす大学の設備等に対して、新たな設備の設置等を通じて、大学の研究開発への貢献を図る。

5. その他教育研究の質の向上に関する重要事項
（10）社会が大きく変化する中、大学の役割を超えた組織間の連携の見直しを図り、科学技術の進展を基礎に、大学研究機関の連携の強化、オープンイノベーションの推進等を前提とした取組を進める。これにより、異分野融合による研究力の強化や人材育成の充実、運営の効率化などの課題に対して、法人の枠組を超えた対応を進める。
II 業務運営の改善及び効率化に関する事項
(11) 内部統制機能を実質化させるための措置や外部の知見を法人経営に生かすための仕組みの構築、機構内外の専門的知見を有する者の法人経営への参画を活用する。機構内のリーダーシップのもとで、強靱なガバナンス体制を構築する。
(12) 大学共同利用機関の運営について、研究者コミュニティの意見を効果的に取り入れるとともに、その運用状況について積極的な情報発信を行うなど、公開された運営の推進を図る。
(13) 大学共同利用機関等の機能を最大限発揮するための基盤となる施設及び設備について、保有資産を最大限活用するとともに、法人全体のマネジメントによるスペース配分や設備の整備・共有等を戦略的に進めると、効率的な整備・運用の推進を図る。

III 財務内容の改善に関する事項
(14) 公的資金のほか、寄附金や産業界からの資金等の受入れを進めるとともに、適切なリスク管理のもとでの効率的な資産運用や、保有資産の積極的な活用、研究成果の活用促進のための出資等を通じて、財源の多様化を進め、安定的な財務基盤の確立を目指す。併せて、自社の機能強化の方向性を見極め、その機能を最大限発揮するため、法人内及び機関内の資源配分の最適化を進めると。

IV 教育及び研究並びに組織及び運営の状況について自ら行う点検及び評価並びに当該状況に係る情報の提供に関する事項
(15) 外部の意見を取り入れつつ、客観的なデータに基づいて、自己点検等の活動に取り組み、自社の強み・特色と課題等を可視化するとともに、それを用いたビジョンに対する法人経営を実現する。併せて、経営方針や計画、その進捗状況等に留まらず、研究教養の成果と社会発展への貢献等を含めて、ステークホルダーに適切な情報発信を行うとともに、政府と関係機関との対話等を通じて法人経営に対する理解・支持を獲得する。また、市民に対するアウトリーチ活動を通じて、科学的リテラシーの涵養を図るとともに我が国の知的基盤の向上を推進する。

V その他業務運営に関する重要事項
(16) 多様なデジタル技術の適切な活用や、マイナンバーカードの活用等により、業務全般の効率性の確保と併せて、機能を高度化するとともに、事務システムの効率化や情報セキュリティ確保の観点を含め、必要な業務体制を整備し、デジタル化を推進する。
9-7 大学共同利用機関法人自然科学研究機構第4期 中期計画
(VI以降を省略)

Ⅰ 教育研究の質の向上に関する目標を達成するためにとるべき措置

1 研究に関する目標を達成するための措置

[1] 自然科学分野の学術研究を先導する中核拠点として、世界最先端の学術研究を推進し、世界最高水準の研究成果を創出して、当該分野における我が国のプレゼンスを高める。

評価指標
[1-1] 第4期中期目標期間中に9,000編以上の論文を発表する。
[1-2] Top10%論文の割合12%以上を維持する。
[1-3] 国際共著論文の割合57.4%以上とする。

[2] 天文学分野では、宇宙の構造の進化と元素の起源を解明するため、ハワイ島マウナケア山頂に設置した口径8.2mの大型光学赤外線望遠鏡「すばる」を安定して運用しつつ、機能強化を段階的に行う。「すばる2」計画で超広視野多天体分光器（PFS）を用いた観測を開始し、超広視野観測及び多天体分光による大規模望遠鏡観測を中心に国際共同利用研究を推進し、高品質なデータを供する。口径8m以上の望遠鏡の中で最も広い視野を持つ強みを活かし、世界最先端の衛星プロジェクトや地上望遠鏡プロジェクトと連携し、宇宙の大規模構造の進化や元素の起源について他国を凌駕する研究を展開する。

評価指標
[2-1] すばる望遠鏡全体の高い論文生産性（年平均145編以上）を維持するとともに、第3期中期目標期間以上の高いインパクト（Top10%論文の割合16%以上）を目指す。
[2-2] 超広視野多天体分光器（PFS）を用いた大規模観測を計画的に240夜以上実施する。
[2-3] ユーザーに対する超広視野観測によるデータ解析用ソフトウェアを公開する。第4期中期目標期間中にPFSを用いた大規模観測及び共同利用観測を計画的に240夜以上実施する。

[3] 天文学分野では国際共同事業として以下を進める。

・惑星誕生の現場と生命素材を含む宇宙における物質の進化を解明するため、日米中欧共同で南米チリに設置したアタカマ大型ミリ波サブミリ波干涉計（アルマ望遠鏡）の国際共同運用を継続し、科学観測を推進する。東アジア地域の核中核拠点として最大限の観測時間を利用可能とする。並行して、アルマ望遠鏡の機能強化を段階的に行う。

・太陽系外の地球型惑星の存在や宇宙での最初の天体の形成など、天文学における人類のフロンティアを開拓するため、既存の望遠鏡を凌駕する解像力と感度をもつ口径30mの超大型光学赤外線望遠鏡（TMT）の建設事業を、日本・米国・カナダ・インド・中国の5ヶ国と共同で推進する。日本が研究開発を分担するTMTの望遠鏡本体構造、主反射鏡、第一期観測装置の製造・製作に着手するために必要な「製造前審査」に第4期中期目標期間中に合格する。

評価指標
[3-1] アルマ望遠鏡の運用を継続し、その観測時間割合を東アジアの科学者コミュニティに確保することで、アルマ全体（年平均300編以上）及び東アジア（年平均60編以上）の論文生産性を維持する。
[3-2] アルマ望遠鏡の最も高い周波数帯域を観測するバンド1受信機（66台）を国際協力によりアルマ望遠鏡へ搭載し、1509年還部を公開する。実施年度に観測目標を実施し、1509年9月に利用開始を目標とする。
[3-3] アルマ望遠鏡について、現在より約2倍高解像度（約5ミリ秒角）を達成する。
[3-4] TMTの望遠鏡本体構造、主反射鏡、第一期観測装置の製造・製作に着手するため、共同利用観測データの供給を求める。

[4] 核融合科学分野では、高温プラズマの中心的な課題（プラズマ中の乱流・構造形成、電子流体不確定性、エネルギー・粒子の捕獲・放出、プラズマとその対向材料との相互作用等）について、特に観測結果の対称性や3次元性を考慮して、実験と理論シミュレーションの連携と国内外の研究機関との共同研究により、それらの物理機構の解明を行う。研究者コミュニティの合意形成及び核融合研究の学術化に向け主導的な役割を担い、実験装置、超高速計算機、統合解析システム、シミュレーションコード等を活用・整備・拡張し、世界最先端の核融合研究を戦略的に推進する。

評価指標
[4-1] 核融合科学に関する共同研究・共同利用に基づく学術論文の発表件数を第4期中期目標期間中に年間200編以上に、及びジャーナルの種類を第4期中期目標期間中に年間40種類以上に増加させる。

[5] 本機構がカバーする各分野の特性を含まえつつ、学問的又は社会的な要請を踏まえた学術研究を戦略的に推進するため、機構直轄センターにおける異分野融合共同研究件数が第3期中期目標期間中の発表件数に加え、その数が増加する。

評価指標
[5-1] 機構直轄センターにおける異分野融合共同研究件数が第3期中期目標期間中の実績（参考：令和2年度までの総数236件）を上回ること。
[6] 天文学の研究を推進するため、中小型観測装置、超高速計算機等の開発研究、整備及び運用を行う。プロジェクト間の連携を含めた柔軟な組織運営を推進するとともに、研究者間コミュニティの高次形成に向けたコール・ネットワークを担う。また、宇宙航空研究開発機構(JAXA)宇宙科学研究所を含む、日本の宇宙観測・探査機の運用を継続するほか、将来の科学衛星や飛翔体に搭載する高度な観測装置の開発、そのための基礎的技術研究を推進し、新たな科学技術の基盤を創出に寄与する。

評価指標
[6-1] 天文学専用の共同利用計算機システムの性能向上と定常的かつ安定な運用を行い、論文数100編／年を超える水準を維持する。
[6-2] 大型高重力波観測機器KAGRAの感度向上を進めつつ、国際共同観測に参加し、重力波を検出する。
[6-3] JAXA火星衛星探査計画(MMX)において、「観測」システムを統率し、観測プロジェクト(形態・モニタリング)のための科学観測運用シミュレーションを、高精度度を達成し各分野において、地球観測から火星の観測に至るまで、柔軟な組織運営を推進する。

[7] 国立天文台において、日本の科学衛星・探査機の運用を継続するほか、将来の科学衛星や飛翔体に搭載する高度な観測装置の開発、そのための基礎的技術研究を推進し、新たな科学技術の基盤を創成に寄与する。

評価指標
[7-1] 暦を計算し編纂する、すなわち「暦要項」、「暦象年表」を毎年着実に作成・公表する。ウェブページ等を通じて、暦に関する情報を提供する。
[7-2] 電子情報社会に適した暦を製造する「超階層暦」を発展させ、世界の公認を求める。

[8] 核融合科学分野において、高度な基準技術の複合系である核融合システムの実現に向けた研究を推進する。そのために、特に、大型高圧群化合物反応、核融合システムの構築、超伝導特性の向上に関心がある核融合科学研究所の基礎技術の高次化を進め、国内外の研究機関との共同研究を推進する。

評価指標
[8-1] 核融合科学研究センターが有する核融合工学分野の先端的中核試験装置を用いた研究を基にし、第4期中期目標期間中に60編以上（年間10編程度）、国際共著論文数を増やす。
[8-2] 超伝導技術の進歩に伴い、熱負荷に耐える高熱流束機器を設計・製作する。又は、製作した機器の性能を検証することで、先進材料の極限性能を解明する。

[9] 核融合科学分野において、核融合炉の概念の構築とそれに必要な技術の高次化を進めるとともに、核融合システムの実現に向けた課題について学際化に取り組み、技術の普遍化を図る。そのために、特に、核融合システムの構築、超伝導特性の向上に関心がある核融合科学研究所の基礎技術の高次化を進め、国内外の研究機関との共同研究を推進する。

評価指標
[9-1] 核融合科学研究所の核融合システムの先端的中核試験装置を用いた研究を基にし、核融合科学研究所による論文の発表数を増やす。特に、第3期中期目標期間中に年間10編以上、国際共著論文数を増やす。
[9-2] 高熱流束を有する新世代核融合システムの発展に伴い、熱負荷に耐える高熱流束機器を設計・製作する。また、製作した機器の性能を検証することで、先端材料の極限性能を解明する。

[10] 基礎生物学研究分野において、生命現象の基本原理を解明するために、細胞の構造・機能・組織化・相互作用・情報伝達、発生・分化・再生、神経系の働きや行動の制御、環境適応、多様性、共生、進化等の研究を推進し、基礎生理科学の理論を展開する。

評価指標
[10-1] 第3期中期目標期間中に、第4期中期目標期間中に上回る780件以上の論文を発表する。

[11] 基礎生物学研究分野において、遺伝子やタンパク質解析技術、ゲノム編集技術等の最先端技術の開発導入や新規モデル生物の開発を進めるとともに、AIやビッグデータを活用した研究により新しい発見を求める。

評価指標
[11-1] 生物機能解析センター、モデル生物研究センター、及び新規モデル生物開発センターを設立する。
[11-2] 研究費を支給する超階層生物学共同利用研究を新設して公募し、毎年3件実施する。

[12] 生理学分野において、時系列観測機器等の専門性の高い重要な方法論を継承するとともに、分子・細胞・細胞群・器官・システムに着目した研究機関の進化に向けた研究を通じて、機能メカニズム及び機能操作技術の新しい方法論を確立し、機能の生成・変化に寄与する研究ツール等を開発する。他機関との協力により、MRI等の画像データを活用した研究を進める。

評価指標
[12-1] 生体の各階層における生命現象の機能メカニズム、生体のレベル間・器官間・機能システム間の関連を追求することにより、機能に着目した研究を進める。

[13] 生理学分野において、時系列観測機器等の専門性の高い重要な方法論を継承するとともに、分子・細胞・細胞群・器官・システムに着目した研究機関の進化に向けた研究を通じて、機能メカニズム及び機能操作技術の新しい方法論を確立し、機能の生成・変化に寄与する研究ツール等を開発する。他機関との協力により、MRI等の画像データを活用した研究を進める。
【14】分子科学分野では、計算科学手法の開発と活用、光を用いた先端的な研究手法や光路の開発、そして新規分子・物質の設計やそれらの高度集積化を通じて、原子・分子・細胞レベルでの多様な構造、物性、反応性、酸単位、エネルギー変換などの高次機能や動的構造を解明するとともに、新たな現象や有用機能の設計と制御に取り組む。

【15】アストロバイオロジーセンターでは、第一線の外国人研究者の招へい、若手研究者の海外派遣に取り組むとともに、大学等と連携して国際的な先端的な共同研究を推進し、小惑星の衛星及び他の小惑星の発見及び観測など、宇宙の観測および研究を進める。

【16】生命創成探究センターでは、「みる・よむ・つくる」の3つのアプローチを基軸に、異分野融合型の研究を進め、生命の本質に迫る研究を展開する。

【17】若手研究者比率を維持するとともに、女性研究者・外国人研究者の一層の雇用と研究者の流動性を高めるため、これまで行われてきた研究環境整備を一層進めるとともに、十分に活用する。女性研究者の活躍を推進するため、男女共同参画推進に関するアクションプランを着実に実行する。
評価指標 21-1 7T-MRIの共同利用件数の年平均値75%を維持する。
21-2 3D-SEMをアップデートし、第4期中期目標期前にも9件の研究の利用に供することにより、共同利用研究件数の年平均値15件を維持する。
21-3 低体積を含む顕微鏡を用いた共同利用研究の共同利用件数の年平均値6件を維持する。
21-4 動物資源利用センターを利用した共同利用研究を開始し、初年度の年間実施件数を第3期中間目標期前に比べて15件以上増加させるとすることを定める。
21-5 共同利用研究の拡充等による，BA活動等の国家事業に関する共同研究の実施課題数と参加大学数を第4期中期目標期前に比べて1.5倍以上とする。
21-6 共同利用研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を，第4期中期目標期前に対し1.5倍以上とする。
21-7 UVSORの計測機器や各分野において世界トップクラスの性能を持つ当該分野専用のスーパーコンピュータ等の高度化を通じて、共同利用機能の更なる充実を図るとともに大学の研究力を強化する。
21-8 IBBPは毎年80件の取扱件数を維持する。
21-9 NICAを含む国内外のネットワーク事業は、第3期中期目標期前に対し1.2倍以上とする。
21-10 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
21-11 ネットワーク形成に向けた勉強会・ワークショップを第4期中期目標期前に対し30回以上実施する。

評価指標 22-1 共同研究の拡充等による，BA活動等の国家事業に関する共同研究の実施課題数と参加大学数を第4期中期目標期前に対し1.5倍以上とする。
22-2 共同研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を、第4期中期目標期前に対し1.5倍以上とする。
22-3 UVSORについては、世界トップクラスの光電子運動量顕微鏡（スピン状態イメージングを可能とする実機）を開発し、第4期中期目標期終了時までに国際的な協力研究を3件以上行う。
22-4 分野に特化した専用のスーパーコンピュータについては、第4期中期目標期前半に更新を行い、実アプリケーション実行性能を2倍以上とする。
22-5 スーパーコンピュータの計算資源の共同利用率を第3期中期目標期前に対し100%以上とする。
22-6 10件以上。

評価指標 23-1 共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
23-2 共同研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を、第4期中期目標期前に対し1.5倍以上とする。
23-3 UVSORの計測機器や各分野において世界トップクラスの性能を持つ当該分野専用のスーパーコンピュータ等の高度化を通じて、共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
23-4 IBBPは毎年80件の取扱件数を維持する。
23-5 NICAを含む国内外のネットワーク事業は、第3期中期目標期前に対し1.2倍以上とする。
23-6 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
23-7 ネットワーク形成に向けた勉強会・ワークショップを第4期中期目標期前に対し30回以上実施する。

評価指標 24-1 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
24-2 同方式により形成されたグループの共同研究を第4期中期目標期前に対し10テーマ以上採択する。

評価指標 25-1 UVSORの計測機器や各分野において世界トップクラスの性能を持つ当該分野専用のスーパーコンピュータ等の高度化を通じて、共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
25-2 共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
25-3 UVSORについては、世界トップクラスの光電子運動量顕微鏡（スピン状態イメージングを可能とする実機）を開発し、第4期中期目標期終了時までに国際的な協力研究を3件以上行う。
25-4 分野に特化した専用のスーパーコンピュータについては、第4期中期目標期前半に更新を行い、実アプリケーション実行性能を2倍以上とする。
25-5 スーパーコンピュータの計算資源の共同利用率を第3期中期目標期前に対し100%以上とする。
25-6 10件以上。

評価指標 26-1 共同研究の拡充等による，BA活動等の国家事業に関する共同研究の実施課題数と参加大学数を第4期中期目標期前に対し1.5倍以上とする。
26-2 共同研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を、第4期中期目標期前に対し1.5倍以上とする。
26-3 UVSORの計測機器や各分野において世界トップクラスの性能を持つ当該分野専用のスーパーコンピュータ等の高度化を通じて、共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
26-4 IBBPは毎年80件の取扱件数を維持する。
26-5 NICAを含む国内外のネットワーク事業は、第3期中期目標期前に対し1.2倍以上とする。
26-6 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
26-7 ネットワーク形成に向けた勉強会・ワークショップを第4期中期目標期前に対し30回以上実施する。

評価指標 27-1 共同研究の拡充等による，BA活動等の国家事業に関する共同研究の実施課題数と参加大学数を第4期中期目標期前に対し1.5倍以上とする。
27-2 共同研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を、第4期中期目標期前に対し1.5倍以上とする。
27-3 UVSORの計測機器や各分野において世界トップクラスの性能を持つ当該分野専用のスーパーコンピュータ等の高度化を通じて、共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
27-4 IBBPは毎年80件の取扱件数を維持する。
27-5 NICAを含む国内外のネットワーク事業は、第3期中期目標期前に対し1.2倍以上とする。
27-6 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
27-7 ネットワーク形成に向けた勉強会・ワークショップを第4期中期目標期前に対し30回以上実施する。

評価指標 28-1 共同研究の拡充等による，BA活動等の国家事業に関する共同研究の実施課題数と参加大学数を第4期中期目標期前に対し1.5倍以上とする。
28-2 共同研究により大学及び核融合科学研究所から BA活動等の国家事業への交付金を明記した論文の発表数を、第4期中期目標期前に対し1.5倍以上とする。
28-3 共同利用機能の更なる充実を図るとともに大学の研究力強化に資する。
28-4 IBBPは毎年80件の取扱件数を維持する。
28-5 NICAを含む国内外のネットワーク事業は、第3期中期目標期前に対し1.2倍以上とする。
28-6 DXプラットフォームを活用したマッチング方式を第4期中期目標期前に対し10件以上採択する。
異分野融和の促進、強みのある分野の更なる強化等をも視野に入れ、共同利用・共同研究拠点との連携による共同利用・共同研究機能のネットワーク化を推進する。

国際交流協定等に基づく、国際的な研究者交流事業や共同研究事業を推進するとともに、特に競争力の高い海外の研究機関との連携推進を戦略的に推進している国際連携研究センター（IRCC）において、世界的戦略研究を促進し、国際共同研究を支援する。

3 教育・人材育成に関する目標を達成するための措置
31 大学共同利用機関が保有する、大学にはない最先端の大型機器やスーパーコンピュータ等、大学共同利用機関でしか供することができない研究設備・資料、大学では不可能な複数の指導教員、非常に頻繁に行われる国際共同研究、各種の国際研究集会・国際人材交流等、大学にはない優れた研究環境を総合研究大学院大学（総研大）の教育に提供して、総研大の特色ある学位プログラムの遂行を支援し、世界の第一線で活躍できる自立した研究者を育成する。受入れ学生に対し、国際的な研究集会に派遣することを実践し、幅広い国際的な視野を持つ人材の育成を図るとともに、リサーチアシスタント制度等により支援する。また、これらの施策について社会に分かりやすく発信し、優秀な総研大生の獲得につなげる。

評価指標 31-1 本機構所属総研大院生に対し、全ての学生が在籍中に1回以上国際会議・ワークショップ等への派遣を支援する。
31-2 国費の支援を受けた学生以外の学生に対するリサーチアシスタント制度の適用率を90%以上に維持する。

32 大学院教育の充実に貢献するため、特別共同利用研究員制度、連携大学院制度、インターンシップ制度等により、国内外の学生等を積極的に受け入れる。また、総研大生に独自に供しているものと同じ研究環境のもとで教育研究を実施し、世界の第一線で活躍できる若手研究者を育成する。

評価指標 32-1 以下の項目に関し、いずれも第4期中期目標期間最終年度において、第3期中期目標期間末での実績を上回ること。
32-2 産業界等との交流の場を第4期中期目標期間中に12回以上実施する。
32-3 機構の有する研究成果を活用し、社会実装につなげるため、第4期中期目標期間終了までに、分野を超えた共同研究を60件以上実施する。

5 その他教育研究の質の向上に関する重要事項に関する目標を達成するための措置
36 大学共同利用機関法人と総合研究大学院大学が設立する一般社団法人「大学共同利用研究教育アライアンス」を活用し、大学執行部との対話、異分野融合研究促進、共同利用・共同研究成果の活用、各種研修の共通化、等について取り組む。

評価指標 36-1 「大学共同利用研究教育アライアンス」において以下の活動を上回ること。
36-2 建築のＮＩＣＡの事業をアライアンスの「大学連携プラットフォーム」を通じて展開し、参画大学数を13機関から拡大する。
36-3 共同研究で得られた成果等のデータをＩＲ用としてアライアンスに提供し、その結果をステークホルダーである大学に発信する。
36-4 建築のアライアンスの課題に対する研修をアライアンスのもとで連携し、学術的・実務的な両面で推進する。
II. 業務運営の改善及び効率化に関する目標を達成するためにとるべき措置

[37] 内部統制機能の実質化を図るため,研究力強化推進本部の体制を充実させ,機構全体として施策の統制された円滑な実施を図る。また,機構内広報誌「NINS Bulletin」を充実させ,機構内の情勢の他,機構を取り巻く情勢,機構・機関執行部の方針等を,機構全体として施策の統制された円滑な実施を図る。また,機構内広報誌「NINS Bulletin」を充実させ,機構内の情勢の他,機構を取り巻く情勢,機構・機関執行部の方針等を,機構全体に正確に伝達する。常設されている機構長選考・監察会議については,外部の知見を法人経営に生かすための仕組みとする。さらに,学外以外からの人材を法人経営に参画させる。これらにより,機構長のリーダーシップのもとで,内部統制のとれた強靭なガバナンス体制を構築する。

評価指標
- 37-1 機構の研究力強化における機構長のガバナンスを強化するため,機構長が本部長を務める研究力推進本部を設置し,機構全体として施策の統制された円滑な実施を図る。
- 37-2 第4期中期目標期間中に研究成果発表に従事している専門家の数が47名以上になる。
- 37-3 外部委員会の委員の数が50%以上になる。

[38] 各機関においては,第4期中期目標期間における事業等について,毎年自己点検を実施し,それを受けて国際的な外部評価を実施する。また,機構全体においては,毎年中期目標・中期計画の自己点検評価を実施し,その結果を公表する。さらに,令和7年度には4年間の総合外部評価を実施する。これらの評価により機構・機関の活動状況を可視化するとともに,外部の意見を取り入れ,評価結果等をエビデンスとして機構全体及び各機関の運営に反映させる。

評価指標
- 38-1 各機関において毎年自己点検を実施し,その結果を公表。また,第4期中期目標期間中に,機関それぞれ1回以上,国際的な外部評価を実施する。
- 38-2 機構においては,第4期中期目標期間中に,機関それぞれ1回以上,国際的な外部評価を実施し,その結果を公表する。
- 38-3 外部評価委員会は,機構全体の活動状況を可視化するとともに,外部の意見を取り入れ,評価結果等をエビデンスとして機構全体及び各機関の運営に反映させる。
資料 373

経営・運営方針や計画、その進捗状況、研究教育の成果と社会発展への貢献等は、ホームページや SNS 等のウェブコンテンツを活用することにより積極的に情報を配信する。また、大学・研究所等向け、一般市民向け、共同研究者向け、産業界向け等、各ステークホルダーに応じた情報の発信を行う。海外の研究者には、「EurekAlert!」を活用した海外プレス機関への情報発信を中心に、また、研究者に加えて、海外の市民にはホームページなどのウェブコンテンツ内の英語情報も充実させることで、機関への理解獲得に努める。マスコミへの情報発信は、発表機関が主催するプレス記者会見に加え、機関が以下の技術開発システムを活用したプレス記者会見の配信と、機関がプレス懇談会において最新の研究成果解説とプレス記者との対話の会や講演会等を定期的に実施し、法人経営に対する理解・支持を獲得する。また、各機関の出前授業、施設公開等のイベントについても、機関が積極的に支援を行い、オンラインでの活用で、各機関が協力・連携した情報発信を行うことができる体制を構築する。これにより、機関全体で理科教育を推進し、ひいては、市民の機関に対する理解・支持を獲得する。

評価指標 42-1 以下の項目において、いずれも第 3 期中期目標期間での実績（平均値）を上回ること。
- EurekAlert! 国際プレスリリース数（参考：令和 2 年度までの 5 年平均 82 件）
- EurekAlert! 上の閲覧数（PageView）（参考：令和 2 年度までの 5 年平均 174,219 件）
- ベースのウェブコンテンツへのアクセス数（参考：令和 2 年度までの 5 年平均 12,645 アクセス）
- 機関がプレス懇談会の参加者数（参考：令和 2 年度までの 5 年平均 11 人）

評価指標 43-1 以下の項目において、いずれも第 3 期中期目標期間での実績（要件数）を上回ること。
- 自然科学研究機関シンポジウム等機関が主催する講演会における参加者数（参考：令和 2 年度までの要件数 1,305 人）
- オンライン開催のイベントにおけるオンライン参加者数（参考：令和 2 年度までの要件数 10,433 人）
- 機関で公開しているアーカイブ動画の閲覧数（参考：令和 3 年 10 月時点の要件数 3,980 回）

V その他運営に関する重要事項に関する目標を達成するためにとるべき措置
これまでは機関が独自に進めてきた事務システムの効率化を、機関の枠を超えて機構全体として一層推進する。この目標の達成のために、デジタル技術を活用して機構構成員の認証基盤を構築する。この認証基盤を背景に、クラウドソリューション等を用いて業務アプリケーションを機構全体で共通基盤化し、機関本部及び各機関がデジタル化に必要な業務運営体制を整備してアプリケーションの活用を進めることで、一層の事務処理の効率化とセキュリティリスクの低減を図る。

評価指標 44-1 既に機構全体で共用されている人事給与、財務会計システムに加え、現在は機関ごとに構築されている解事業、勤務管理、法人文書管理などの業務システムが、令和 6 年度までに機構全体で共用できるように統一化されていること。
9-8 自然科学研究機構分子科学研究所規則リンク集

自然科学研究所分子科学研究所研究教育職員の任期に関する規則

自然科学研究所分子科学研究所点検評価規則
https://www.ims.ac.jp/rules/rule-003.pdf

自然科学研究所分子科学研究所将来計画委員会規則
https://www.ims.ac.jp/rules/rule-004.pdf