Design and Synthesis of Chiral Organic Molecules for Asymmetric Synthesis

The field of molecular catalysis has been an attractive area of research to realize efficient and new transformations in the synthesis of functional molecules. The design of ligands and chiral molecular catalysts has been recognized as one of the most valuable strategies; therefore, a great deal of effort has been dedicated to the developments. In general, “metal” has been frequently used as the activation center, and conformationally rigid catalyst framework has been preferably components for the catalyst design. To develop new type of molecular catalysis, we have focused on the use of hydrogen and halogen atom as activation unit, and have utilized non-covalent interactions as organizing forces of catalyst framework in the molecular design of catalyst, which had not received much attention until recently. We hope that our approach will open the new frontier in chiral organic molecules from chiral molecular chemistry to chiral molecular science.

Keywords

Synthetic Chemistry, Molecular Catalyst, Non-Covalent Interaction

Selected Publications

Figure 1. Hydrogen bonding network in chiral bis-phosphoric acid catalyst derived from (R)-3,3'-di(2-hydroxy-3-arylphenyl)binaphthol. Hydrogen bond acts as activation unit for the substrate in asymmetric reaction space and controls atropisomeric behavior in naphthyl-phenyl axis.
1. Design of Hydrogen Bond-Based Molecular Catalysts

Allylation of imines with allylic metal reagents has been one of the most valuable tools to synthesize enantioenriched homoallylic amines. Due to the inherent nature of allylic metal reagent, however, regioselectivity has been a long-standing subject in this area. To develop the synthetic reaction for enantioenriched linear homoallylic amines, we discovered chirality transferred formal 1,3-rearrangement of ene-aldimines in the presence of Brønsted acid, and developed it as synthetic method for variety of enantioenriched linear homoallylic amines.\(^1\) Furthermore, we studied details of reaction mechanism and succeeded catalytic asymmetric version of this rearrangement.\(^2\) On the basis of our discovery, catalytic asymmetric version of this reaction was developed.\(^3\) To the best our discovery, the first example of catalytic asymmetric methylene migration.

Figure 2. Asymmetric counteranion-directed catalysis via OH···O, CH···O, CH···π, π···π interactions.

Perfluorinated aryls have emerged as an exquisite class of motifs in the design of molecular catalysts, and their electronic and steric alterations lead to notable changes in the chemical yields and the stereoselectivities. We developed the perfluoroaryl-incorporated chiral mono-phosphoric acids as chiral Brønsted acid catalysts that can deliver high yields and stereo-selectivities in the reactions of imines with unactivated alkynes. We have described the first example of a diastereo- and enantioselective [4+2] cycloaddition reaction of N-benzoyl imines, as well as the enantioselective three-component imino-ene reaction using aldehydes and FmocNH\(_2\).\(^4\)

We have developed (R)-3,3′-di(2-hydroxy-3-arylyphenyl) binaphthol derived chiral bis-phosphoric acid which efficiently catalyzed enantioselective Diels–Alder reaction of acroleins with amidodienes.\(^5,6\) We demonstrated that two phosphoric acid groups with individually different acidities can play distinct roles in catalyst behavior through hydrogen bonding interactions. Therefore, we developed a Brønsted acid with two different acidic sites, aryl phosphinic acid-phosphoric acid.\(^7\) Furthermore, molecular design of a chiral Brønsted acid with two different acidic sites, chiral carboxylic acid– cyclic mono-phosphoric acid, was identified as a new and effective concept in asymmetric hetero-Diels–Alder reaction of 2-azopyridinoester with amidodienes.\(^8\)

2. Design of Halogen Bond-Based Molecular Catalysts

Halogen bonds are attractive non-covalent interactions between terminal halogen atoms in compounds of the type R—X (X = Cl, Br, I) and Lewis bases LBs. It has been known that strong halogen bonds are realized when “R” is highly electronegative substituents such as perfluorinated alkyl or aryl substituents. On the basis of electrophilic feature for halogen atom, we have examined it to develop catalysis with halogen bond for carbon–carbon bond forming reactions.\(^9,10\)

We found that perfluorinated iodoaryl are able to catalyze the allylation reaction to N-activated heteroaromatics. On the basis of this discovery, a quantitative approach was studied using 4-substituted perfluorinated iodo benzene.\(^11\) Examination of the electrostatic potential surfaces showed that substituent R groups significantly affected the charge density of iodine, fluorine, and carbon on the benzene ring.\(^12\) NMR titrations were used to determine the binding constants K for chlorine, and their catalytic activities were evaluated in the allylation reaction. We revealed that the log K and product yields were linearly correlated, and that they were dependent on the Hammett substituent parameter, σ\(_{meta}\). This linear correlation provided a quantitative predictive model for both the binding constant and the reaction yield. Concomitantly, this efficiently permitted the development of a highly active anion-binding catalyst, namely 4-CNC\(_6\)F\(_4\)I. The catalytic activity of 4-CNC\(_6\)F\(_4\)I was established in the allylation and crotylation of silatrane reagents to N-activated isoquinolines.

Figure 3. Molecular electrostatic potential surfaces of 4-CNC\(_6\)F\(_4\)I (R: CH\(_3\), H, F, and CF\(_3\)) at the M06-2X-D3/6-311+G(d,p)-SDD level of theory.

References
10) N. Momiyama et al., One. article under revision; six manuscripts under preparation for submission.