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Ultrafast Quantum Computer and Simulator
Department of Photo-Molecular Science
Division of Photo-Molecular Science II

It is observed in a double-slit experiment by Tonomura 
and coworkers that single electrons recorded as dots on a 
detector screen build up to show an interference pattern, which 
is delocalized over the screen.1) This observation indicates that 
a delocalized wave function of an isolated electron interacts 
with the screen, which is composed of many nuclei and 
electrons interacting with each other, and becomes localized in 
space. This change, referred to as “collapse” in quantum 
theory, is often accepted as a discontinuous change, but a basic 
question arises: When and how the delocalized wave function 
becomes localized? Our objective is uncovering this mystery 
by observing the spatiotemporal evolution of a wave function 
delocalized over many particles interacting with each other. 
Having this objective in mind, we have developed coherent 
control with precisions on the picometer spatial and atto
second temporal scales. Now we apply this ultrafast and 
ultrahigh-precision coherent control to delocalized wave 

functions of macroscopic many-particle systems of an array of 
ultracold rubidium (Rb) Rydberg atoms, as depicted schemati
cally in Figure 1 and named “ultrafast quantum simulator,” 
envisaging the quantum-classical boundary connected smoothly.

Figure 1.  Metal-like quantum gas. A schematic of the many-body 
quantum simulator with ultracold Rydberg atoms, named “ultrafast 
quantum simulator,” where electronic wave functions spatially overlap 
between neighboring atoms.2)
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1.  Development of an “Ultrafast Quantum 
Simulator” by Optical Control with 
Precisions on the Attosecond Temporal 
and Submicron Spatial Scales2–7)

We develop a novel quantum simulator that can simulate 
quantum many-body dynamics for more than 1000 particles 
within one nanosecond, combining our two unique experimen
tal resources: “coherent control with attosecond precision”3) 
and “a strongly correlated ultracold Rydberg gas.”4–6)

We have completed a standard hardware of this ultrafast 
quantum simulator composed of an array of ultracold Rb 
atoms trapped in an optical lattice and excited to Rydberg 
levels with a coherent picosecond (ps) laser pulse.5,6) The 
broad bandwidth of the ps laser pulse has allowed us to excite 
the atoms in the neighboring lattice sites to Rydberg levels 
simultaneously for the first time. Recently in 2023, quantum 
magnetism has successfully been simulated with this standard 
hardware assembled with ~30,000 Rb atoms.6) Our novel 
scheme above has accelerated the simulation speed by three 
orders of magnitude compared to previous quantum simulators 
of magnetism. Moreover, we have succeeded in simulating the 
formation dynamics of “quantum entanglement,” which is 
difficult to measure in actual magnetic materials, on the 
timescale of several hundred picoseconds.

Very recently in 2024 we have revealed the quantum 
entanglement between electronic and motional states in our 
“ultrafast quantum simulator,” generated by the repulsive 
force due to the strong interaction between Rydberg atoms as 
seen in Figure 2.7) We have also proposed a new quantum 
simulation method including repulsive force between particles. 

We continue upgrading this ultrafast quantum simulators, 
generously supported by the Q-LEAP program of the MEXT 
of Japan.

2.  Development of an Ultrafast Quantum 
Computer with Cold Atoms8,10,11)

We develop a novel quantum computer with two dimen
sional arrays of ultracold Rb atoms trapped in optical tweezers. 
These atomic qubits are manipulated with an ultrafast laser for 
the first time, leading to a completely new quantum computer 
we refer to as an “ultrafast quantum computer.” With this 
ultrafast quantum computer, we succeeded in executing a con
trolled Z gate,8) accelerating a two-qubit gate (a fundamental 
arithmetic element essential for quantum computing) of cold-
atom quantum computers by two orders of magnitude. It is also 
two orders of magnitude faster than the noise from the external 
environment and operating lasers, and thus can be isolated from 
the noise. Moreover, this ultrafast two-qubit gate is faster than 
the fast two-qubit gate demonstrated recently by “Google AI 
Quantum” with superconducting qubits.9) We are currently 
improving key enabling technologies for optical tweezers and 
operating lasers.10,11)

We continue upgrading this ultrafast quantum computers, 
generously supported by the Moonshot program of the Cabinet 
Office of Japan.
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Figure 2.  Conceptual diagram of the quantum entanglement between electronic and motional states in our ultrafast quantum simulation of 
magnetic material.7) Atoms in the optical lattice, trapped at a distance of 0.5 micron, are excited to the Rydberg state by the ultrafast excitation 
technique. Interaction between close Rydberg atoms results in the repulsive force, leading to the quantum entanglement between electronic and 
motional states of the atoms.




