分子科学研究所

Site Search

News

News Detail

2022/07/13

Press Release

Sugar code in protein - Identification of a molecular code embedded in protein for regulating its glycosylation

Collaborative research groups have discovered a regulatory code of glycosylation in protein. Furthermore, they have demonstrated that the incorporation of this molecular code can be embedded into other glycoproteins serving as biopharmaceuticals to control their glycosylation.

Many proteins in nature exist as glycoproteins, which consist of protein (polypeptide chain) and glycan (sugar chain). The protein structure is determined on the basis of its genetic blueprint, but the information on glycans is not directly encoded by the genome. Therefore, it is difficult to control protein glycosylation. Under these circumstances, a collaborative research group, including researchers at Nagoya City University, National Institutes of Natural Sciences, and Academia Sinica, has found a specific amino acid sequence in a polypeptide that induces a specific glycan structure called Lewis X.

The researchers in Japan have previously shown that Lewis X specifically modifies the protein LAMP-1 in mouse neural stem cells through the enzymatic action of fucosyltransferase 9 (FUT9). In this recent study, they have shown that Lewis X modification specific for LAMP-1 occurs not only in neural stem cells but also in several cultured mammalian cells. Furthermore, they have found that a sequence consisting of 29-amino-acid residues in LAMP-1 promotes Lewis X modification catalyzed by the enzyme, and this sequence induces Lewis X modification when fused to other proteins used as biopharmaceuticals. This means that, in glycoprotein molecules, a specific amino-acid sequence can determine their glycan structures.

Most of biopharmaceuticals are glycoproteins, as best exemplified by therapeutic antibodies.  Their glycan structures are critical for their efficacy and safety. Therefore, the control of glycosylation is an important issue in the development of biopharmaceuticals. Their findings on a regulatory code of protein glycosylation are expected to pave the way for controlling glycosylation of biopharmaceuticals.

IMAGE: Specific 29-amino-acid sequence from LAMP-1 serves as a “Lewis X code,” which is deciphered by FUT9, and it can be embedded into erythropoietin to evoke Lewis X modification.

 

Information of the paper

Journal Name: Communications Biology
Title: “An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase 9”
DOI: 10.1038/s42003-022-03616-1

 

Contact Person:

Hirokazu Yagi
Nagoya City University
hyagi_at_phar.nagoya-cu.ac.jp

Koichi Kato
ExCELLS / Institute for Molecular Science
kkato_at_excells.orion.ac.jp

*Please replace the "_at_" with @